TY - JOUR
T1 - Yeast Mre11 and Rad1 Proteins Define a Ku-Independent Mechanism to Repair Double-Strand Breaks Lacking Overlapping End Sequences
AU - Ma, Jia Lin
AU - Kim, Eun Mi
AU - Haber, James E.
AU - Lee, Sang Eun
PY - 2003/12
Y1 - 2003/12
N2 - End joining of double-strand breaks (DSBs) requires Ku proteins and frequently involves base pairing between complementary terminal sequences. To define the role of terminal base pairing in end joining, two oppositely oriented HO endonuclease cleavage sites separated by 2.0 kb were integrated into yeast chromosome III, where constitutive expression of HO endonuclease creates two simultaneous DSBs with no complementary end sequence. Lack of complementary sequence in their 3′ single-strand overhangs facilitates efficient repair events distinctly different from when the 3′ ends have a 4-bp sequence base paired in various ways to create 2- to 3-bp insertions. Repair of noncomplementary ends results in a set of nonrandom deletions of up to 302 bp, annealed by imperfect microhomology of about 8 to 10 bp at the junctions. This microhomology-mediated end joining (MMEJ) is Ku independent, but strongly dependent on Mre11, Rad50, and Rad1 proteins and partially dependent on Dnl4 protein. The MMEJ also occurs when Rad52 is absent, but the extent of deletions becomes more limited. The increased gamma ray sensitivity of rad1Δ rad52Δ yku70Δ strains compared to rad52Δ yku70Δ strains suggests that MMEJ also contributes to the repair of DSBs induced by ionizing radiation.
AB - End joining of double-strand breaks (DSBs) requires Ku proteins and frequently involves base pairing between complementary terminal sequences. To define the role of terminal base pairing in end joining, two oppositely oriented HO endonuclease cleavage sites separated by 2.0 kb were integrated into yeast chromosome III, where constitutive expression of HO endonuclease creates two simultaneous DSBs with no complementary end sequence. Lack of complementary sequence in their 3′ single-strand overhangs facilitates efficient repair events distinctly different from when the 3′ ends have a 4-bp sequence base paired in various ways to create 2- to 3-bp insertions. Repair of noncomplementary ends results in a set of nonrandom deletions of up to 302 bp, annealed by imperfect microhomology of about 8 to 10 bp at the junctions. This microhomology-mediated end joining (MMEJ) is Ku independent, but strongly dependent on Mre11, Rad50, and Rad1 proteins and partially dependent on Dnl4 protein. The MMEJ also occurs when Rad52 is absent, but the extent of deletions becomes more limited. The increased gamma ray sensitivity of rad1Δ rad52Δ yku70Δ strains compared to rad52Δ yku70Δ strains suggests that MMEJ also contributes to the repair of DSBs induced by ionizing radiation.
UR - http://www.scopus.com/inward/record.url?scp=0242468933&partnerID=8YFLogxK
U2 - 10.1128/MCB.23.23.8820-8828.2003
DO - 10.1128/MCB.23.23.8820-8828.2003
M3 - 期刊論文
C2 - 14612421
AN - SCOPUS:0242468933
SN - 0270-7306
VL - 23
SP - 8820
EP - 8828
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 23
ER -