Whittaker Modules for Classical Lie Superalgebras

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

We classify simple Whittaker modules for classical Lie superalgebras in terms of their parabolic decompositions. We establish a type of Miličić–Soergel equivalence of a category of Whittaker modules and a category of Harish–Chandra bimodules. For classical Lie superalgebras of type I, we reduce the problem of composition factors of standard Whittaker modules to that of Verma modules in their BGG categories O. As a consequence, the composition series of standard Whittaker modules over the general linear Lie superalgebras gl(m| n) and the ortho-symplectic Lie superalgebras osp(2 | 2 n) can be computed via the Kazhdan–Lusztig combinatorics.

原文???core.languages.en_GB???
頁(從 - 到)351-383
頁數33
期刊Communications in Mathematical Physics
388
發行號1
DOIs
出版狀態已出版 - 11月 2021

指紋

深入研究「Whittaker Modules for Classical Lie Superalgebras」主題。共同形成了獨特的指紋。

引用此