Whittaker categories of quasi-reductive lie superalgebras and quantum symmetric pairs

Chih Whi Chen, Shun Jen Cheng

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

We show that, for an arbitrary finite-dimensional quasi-reductive Lie superalgebra over C with a triangular decomposition and a character ζ of the nilpotent radical, the associated Backelin functor Γζ sends Verma modules to standard Whittaker modules provided the latter exist. As a consequence, this gives a complete solution to the problem of determining the composition factors of the standard Whittaker modules in terms of composition factors of Verma modules in the category O. In the case of the ortho-symplectic Lie superalgebras, we show that the Backelin functor Γζ and its target category, respectively, categorify a q-symmetrizing map and the corresponding q-symmetrized Fock space associated with a quasi-split quantum symmetric pair of type AIII.

原文???core.languages.en_GB???
文章編號e37
期刊Forum of Mathematics, Sigma
12
DOIs
出版狀態已出版 - 2 4月 2024

指紋

深入研究「Whittaker categories of quasi-reductive lie superalgebras and quantum symmetric pairs」主題。共同形成了獨特的指紋。

引用此