Whittaker Categories of Quasi-reductive Lie Superalgebras and Principal Finite W-superalgebras

Chih Whi Chen, Shun Jen Cheng

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

We study the Whittaker category N(ζ) of the Lie superalgebra g for an arbitrary character ζ of the even subalgebra of the nilpotent radical associated with a triangular decomposition of g. We prove that the Backelin functor from either the integral subcategory or any strongly typical block of the BGG category to the Whittaker category sends irreducible modules to irreducible modules or zero. The category N(ζ) provides a suitable framework for studying finite W-superalgebras associated with an even principal nilpotent element. For the periplectic Lie superalgebras p(n), we formulate the principal finite W-superalgebras Wζ and establish a Skryabin-type equivalence. For a basic classical and a strange Lie superalgebras, we prove that the category of finite-dimensional modules over a given principal finite W-superalgebra Wζ is equivalent to N(ζ) under the Skryabin equivalence, for a non-singular character ζ. As a consequence, we give a super analogue of Soergel’s Struktursatz for a certain Whittaker functor from the integral BGG category O to the category of finite-dimensional modules over Wζ.

原文???core.languages.en_GB???
期刊Transformation Groups
DOIs
出版狀態已被接受 - 2024

指紋

深入研究「Whittaker Categories of Quasi-reductive Lie Superalgebras and Principal Finite W-superalgebras」主題。共同形成了獨特的指紋。

引用此