Valorization of soybean pulp for sustainable α-ketoisocaproate production using engineered Bacillus subtilis whole-cell biocatalyst

Eugene Huang, Jhen Sheng Yan, Ronnie G. Gicana, Yin Ru Chiang, Fang I. Yeh, Chieh Chen Huang, Po Hsiang Wang

研究成果: 雜誌貢獻期刊論文同行評審

摘要

The disposal of soybean pulp (okara) (∼14 M tons annually) represents a global concern. α-ketoisocaproate (KIC) is an intrinsic L-leucine metabolite boosting mammalian muscle growth and has great potential in animal husbandry. However, the use of pure L-leucine (5000 USD/kg) for KIC (22 USD/kg) bioproduction is cost-prohibitive in practice, while okara rich in L-leucine (10%) could serve as an economical alternative. Following the concept of a circular bioeconomy, we managed to develop a cost-efficient platform to valorize okara into KIC. In this study, proteolytic Bacillus subtilis strain 168 capable of utilizing okara as a comprehensive substrate was employed as the whole-cell biocatalyst for KIC bioproduction. First, we elucidated the function of genes involved in KIC downstream metabolism in strain 168, including those encoding 2-oxoisovalerate dehydrogenase (bkdAA), 2-oxoisovalerate decarboxylase (bkdAB), enoyl-CoA hydratase (fadB), and bifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (fadN). Among those KIC downstream metabolizing mutants of strain 168, the 2-oxoisovalerate decarboxylase gene knockout strain (ΔbkdAB) was found to have a better accumulation of KIC. To further improve the KIC yield, a soluble L-amino acid deaminase (LAAD) from Proteus vulgaris was heterologously expressed in the ΔbkdAB strain and a ∼50% conversion of total L-leucine contained in okara was catalyzed into KIC, along with a ∼50% reduction of CO2 emission compared to the wild-type cultures. Altogether, this renovated biocatalytic system provides an alternative platform to valorize okara for producing value-added chemicals in an eco-friendly manner.

原文???core.languages.en_GB???
文章編號138200
期刊Chemosphere
322
DOIs
出版狀態已出版 - 5月 2023

指紋

深入研究「Valorization of soybean pulp for sustainable α-ketoisocaproate production using engineered Bacillus subtilis whole-cell biocatalyst」主題。共同形成了獨特的指紋。

引用此