每年專案
摘要
Interleukin 6 (IL-6) has been regarded as a biomarker that can be applied as a predictor for the severity of COVID-19-infected patients. The IL-6 level also correlates well with respiratory dysfunction and mortality risk. In this work, three silanization approaches and two types of biorecognition elements were used on the silicon nanowire field-effect transistors (SiNW-FETs) to investigate and compare the sensing performance on the detection of IL-6. Experimental data revealed that the mixed-SAMs-modified silica surface could have superior surface morphology to APTES-modified and APS-modified silica surfaces. According to the data on detecting various concentrations of IL-6, the detection range of the aptamer-functionalized SiNW-FET was broader than that of the antibody-functionalized SiNW-FET. In addition, the lowest concentration of valid detection for the aptamer-functionalized SiNW-FET was 2.1 pg/mL, two orders of magnitude lower than the antibody-functionalized SiNW-FET. The detection range of the aptamer-functionalized SiNW-FET covered the concentration of IL-6, which could be used to predict fatal outcomes of COVID-19. The detection results in the buffer showed that the anti-IL-6 aptamer could produce better detection results on the SiNW-FETs, indicating its great opportunity in applications for sensing clinical samples.
原文 | ???core.languages.en_GB??? |
---|---|
文章編號 | 625 |
期刊 | Sensors (Switzerland) |
卷 | 23 |
發行號 | 2 |
DOIs | |
出版狀態 | 已出版 - 1月 2023 |
指紋
深入研究「Ultrasensitive Detection of Interleukin 6 by Using Silicon Nanowire Field-Effect Transistors」主題。共同形成了獨特的指紋。專案
- 1 已完成