Tunneling current and emission spectrum of a single-electron transistor under optical pumping

David M.T. Kuo, Yia Chung Chang

研究成果: 雜誌貢獻期刊論文同行評審

22 引文 斯高帕斯(Scopus)

摘要

Theoretical studies of the tunneling current and emission spectrum of a single electron transistor (SET) under optical pumping are presented. The calculation is performed via Keldysh Green's function method within the Anderson model with two energy levels. It is found that holes in the quantum dot (QD) created by optical pumping lead to new channels for the electron tunneling from emitter to collector. As a consequence, an electron can tunnel through the QD via additional channels, characterized by the exciton, trion, and biexciton states. It is found that the tunneling current as a function of the gate voltage displays a series of sharp peaks and the spacing between these peaks can be used to determine the exciton binding energy as well as the electron-electron Coulomb repulsion energy. In addition, we show that the single-photon emission associated with the electron-hole recombination in the exciton complexes formed in the QD can be controlled both electrically and optically.

原文???core.languages.en_GB???
文章編號085334
期刊Physical Review B - Condensed Matter and Materials Physics
72
發行號8
DOIs
出版狀態已出版 - 15 8月 2005

指紋

深入研究「Tunneling current and emission spectrum of a single-electron transistor under optical pumping」主題。共同形成了獨特的指紋。

引用此