TY - JOUR
T1 - Tropical cyclone-induced rainfall variability and its implications for drought in Taiwan
T2 - Insights from 1981 to 2022
AU - Vo, Trong Hoang
AU - Liou, Yuei An
N1 - Publisher Copyright:
© 2024
PY - 2024/12/15
Y1 - 2024/12/15
N2 - This study analyzes the interplay between tropical cyclones (TCs) and drought in Taiwan over the period from 1981 to 2022, leveraging data from CHIRPS, FLDAS, IBTrACS, and Sentinel and Landsat satellite imagery. Our findings reveal a significant decline in TC-induced rainfall over the last decade, with a turning point in 2017. We establish a low to moderate positive correlation between TC-induced rainfall and subsequent spring soil moisture levels, with April exhibiting the strongest connection. This relationship strengthens in transitions from agricultural to forested areas. Additionally, our research identifies a robust correlation (r = 0.77) between TC-induced rainfall and reservoir water levels, underscoring the consistent link between TCs and hydrological drought. However, intriguing disparities emerge in water availability patterns. In 2007 and 2020, reservoirs maintained normal levels despite reduced typhoon rainfall in prior years. Conversely, in 2019, water shortages occurred despite typical TC-induced rainfall. These cases suggest that water availability is influenced by factors beyond TCs, including water demand, infrastructure, monsoon and spring rainfall, air temperature, and water management strategies. Furthermore, we uncover a symmetrical relationship between TCs and monsoon-induced rainfall, indicating their potential to balance reservoir water supply. Nevertheless, both TCs and the monsoon exhibit declining trends in the past decade, heightening the risk of spring season water scarcity in Taiwan. Effective water resource management demands consideration of natural and anthropogenic factors, encompassing land use changes, deforestation, production activities, water pollution, and policy strategies. These measures are essential to mitigate water scarcity and promote sustainability in Taiwan.
AB - This study analyzes the interplay between tropical cyclones (TCs) and drought in Taiwan over the period from 1981 to 2022, leveraging data from CHIRPS, FLDAS, IBTrACS, and Sentinel and Landsat satellite imagery. Our findings reveal a significant decline in TC-induced rainfall over the last decade, with a turning point in 2017. We establish a low to moderate positive correlation between TC-induced rainfall and subsequent spring soil moisture levels, with April exhibiting the strongest connection. This relationship strengthens in transitions from agricultural to forested areas. Additionally, our research identifies a robust correlation (r = 0.77) between TC-induced rainfall and reservoir water levels, underscoring the consistent link between TCs and hydrological drought. However, intriguing disparities emerge in water availability patterns. In 2007 and 2020, reservoirs maintained normal levels despite reduced typhoon rainfall in prior years. Conversely, in 2019, water shortages occurred despite typical TC-induced rainfall. These cases suggest that water availability is influenced by factors beyond TCs, including water demand, infrastructure, monsoon and spring rainfall, air temperature, and water management strategies. Furthermore, we uncover a symmetrical relationship between TCs and monsoon-induced rainfall, indicating their potential to balance reservoir water supply. Nevertheless, both TCs and the monsoon exhibit declining trends in the past decade, heightening the risk of spring season water scarcity in Taiwan. Effective water resource management demands consideration of natural and anthropogenic factors, encompassing land use changes, deforestation, production activities, water pollution, and policy strategies. These measures are essential to mitigate water scarcity and promote sustainability in Taiwan.
KW - Drought
KW - Remote sensing
KW - Taiwan
KW - Tropical cyclone-induced rainfall
UR - http://www.scopus.com/inward/record.url?scp=85208180955&partnerID=8YFLogxK
U2 - 10.1016/j.atmosres.2024.107771
DO - 10.1016/j.atmosres.2024.107771
M3 - 期刊論文
AN - SCOPUS:85208180955
SN - 0169-8095
VL - 312
JO - Atmospheric Research
JF - Atmospheric Research
M1 - 107771
ER -