TY - JOUR
T1 - Triebel-lizorkin spaces of para-accretive type and a T b theorem
AU - Lin, Chin Cheng
AU - Wang, Kunchuan
N1 - Funding Information:
Chin-Cheng Lin supported by National Science Council, Republic of China under Grant #NSC 97-2115-M-008-021-MY3. Kunchuan Wang supported by National Science Council, Republic of China under Grant #NSC 97-2115-M-259-009 and NCU Center for Mathematics and Theoretic Physics.
PY - 2009/7
Y1 - 2009/7
N2 - In this article, we use a discrete Calderón-type reproducing formula and Plancherel-Pôlya-type inequality associated to a para-accretive function to characterize the Triebel-Lizorkin spaces of para-accretive type F· a,q b,p , which reduces to the classical Triebel-Lizorkin spaces when the para-accretive function is constant. Moreover, we give a necessary and sufficient condition for the F· 0,q 1,p -F· 0,q b,p boundedness of paraproduct operators. From this, we show that a generalized singular integral operator T with MbTMb ε WBP is bounded from F· 0,q 1,p to F· 0,q b,p if and only if T b ε F· 0,q b,∞ and T *b = 0 for n/n+e
AB - In this article, we use a discrete Calderón-type reproducing formula and Plancherel-Pôlya-type inequality associated to a para-accretive function to characterize the Triebel-Lizorkin spaces of para-accretive type F· a,q b,p , which reduces to the classical Triebel-Lizorkin spaces when the para-accretive function is constant. Moreover, we give a necessary and sufficient condition for the F· 0,q 1,p -F· 0,q b,p boundedness of paraproduct operators. From this, we show that a generalized singular integral operator T with MbTMb ε WBP is bounded from F· 0,q 1,p to F· 0,q b,p if and only if T b ε F· 0,q b,∞ and T *b = 0 for n/n+e
KW - Calderón reproducing formula
KW - Para-accretive function
KW - Paraproduct operator
KW - Plancherel-Pôlya inequality
KW - T b theorem
KW - Triebel-Lizorkin space
UR - http://www.scopus.com/inward/record.url?scp=84864038774&partnerID=8YFLogxK
U2 - 10.1007/s12220-009-9072-0
DO - 10.1007/s12220-009-9072-0
M3 - 期刊論文
AN - SCOPUS:84864038774
SN - 1050-6926
VL - 19
SP - 667
EP - 694
JO - Journal of Geometric Analysis
JF - Journal of Geometric Analysis
IS - 3
ER -