Triebel-lizorkin spaces of para-accretive type and a T b theorem

Chin Cheng Lin, Kunchuan Wang

研究成果: 雜誌貢獻期刊論文同行評審

6 引文 斯高帕斯(Scopus)


In this article, we use a discrete Calderón-type reproducing formula and Plancherel-Pôlya-type inequality associated to a para-accretive function to characterize the Triebel-Lizorkin spaces of para-accretive type F· a,q b,p , which reduces to the classical Triebel-Lizorkin spaces when the para-accretive function is constant. Moreover, we give a necessary and sufficient condition for the F· 0,q 1,p -F· 0,q b,p boundedness of paraproduct operators. From this, we show that a generalized singular integral operator T with MbTMb ε WBP is bounded from F· 0,q 1,p to F· 0,q b,p if and only if T b ε F· 0,q b,∞ and T *b = 0 for n/n+e <p = 1 and n/ n+e <q ≤ 2, where e is the regularity exponent of the kernel of T.

頁(從 - 到)667-694
期刊Journal of Geometric Analysis
出版狀態已出版 - 7月 2009


深入研究「Triebel-lizorkin spaces of para-accretive type and a T b theorem」主題。共同形成了獨特的指紋。