## 摘要

This work investigates the existence and non-existence of travelling wave solutions for Kolmogorov-type delayed lattice reaction-diffusion systems. Employing the cross iterative technique coupled with the explicit construction of upper and lower solutions in the theory of quasimonotone dynamical systems, we can find two threshold speeds c∗ and c∗ with c∗ c∗ >0. If the wave speed is greater than c∗, then we establish the existence of travelling wave solutions connecting two different equilibria. On the other hand, if the wave speed is smaller than c-∗, we further prove the non-existence result of travelling wave solutions. Finally, several ecological examples including one-species, two-species and three-species models with various functional responses and time delays are presented to illustrate the analytical results.

原文 | ???core.languages.en_GB??? |
---|---|

頁（從 - 到） | 1336-1367 |

頁數 | 32 |

期刊 | IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications) |

卷 | 80 |

發行號 | 5 |

DOIs | |

出版狀態 | 已出版 - 28 10月 2014 |