Transfer Learning-Based Multi-Scale Denoising Convolutional Neural Network for Prostate Cancer Detection

Kwok Tai Chui, Brij B. Gupta, Hao Ran Chi, Varsha Arya, Wadee Alhalabi, Miguel Torres Ruiz, Chien Wen Shen

研究成果: 雜誌貢獻期刊論文同行評審

19 引文 斯高帕斯(Scopus)

摘要

Background: Prostate cancer is the 4th most common type of cancer. To reduce the workload of medical personnel in the medical diagnosis of prostate cancer and increase the diagnostic accuracy in noisy images, a deep learning model is desired for prostate cancer detection. Methods: A multi-scale denoising convolutional neural network (MSDCNN) model was designed for prostate cancer detection (PCD) that is capable of noise suppression in images. The model was further optimized by transfer learning, which contributes domain knowledge from the same domain (prostate cancer data) but heterogeneous datasets. Particularly, Gaussian noise was introduced in the source datasets before knowledge transfer to the target dataset. Results: Four benchmark datasets were chosen as representative prostate cancer datasets. Ablation study and performance comparison between the proposed work and existing works were performed. Our model improved the accuracy by more than 10% compared with the existing works. Ablation studies also showed average improvements in accuracy using denoising, multi-scale scheme, and transfer learning, by 2.80%, 3.30%, and 3.13%, respectively. Conclusions: The performance evaluation and comparison of the proposed model confirm the importance and benefits of image noise suppression and transfer of knowledge from heterogeneous datasets of the same domain.

原文???core.languages.en_GB???
文章編號3687
期刊Cancers
14
發行號15
DOIs
出版狀態已出版 - 8月 2022

指紋

深入研究「Transfer Learning-Based Multi-Scale Denoising Convolutional Neural Network for Prostate Cancer Detection」主題。共同形成了獨特的指紋。

引用此