TY - JOUR
T1 - Toward optimal model averaging in regression models with time series errors
AU - Cheng, Tzu Chang F.
AU - Ing, Ching Kang
AU - Yu, Shu Hui
N1 - Publisher Copyright:
© 2015 Elsevier B.V.
PY - 2015/12
Y1 - 2015/12
N2 - Consider a regression model with infinitely many parameters and time series errors. We are interested in choosing weights for averaging across generalized least squares (GLS) estimators obtained from a set of approximating models. However, GLS estimators, depending on the unknown inverse covariance matrix of the errors, are usually infeasible. We therefore construct feasible generalized least squares (FGLS) estimators using a consistent estimator of the unknown inverse matrix. Based on this inverse covariance matrix estimator and FGLS estimators, we develop a feasible autocovariance-corrected Mallows model averaging criterion to select weights, thereby providing an FGLS model averaging estimator of the true regression function. We show that the generalized squared error loss of our averaging estimator is asymptotically equivalent to the minimum one among those of GLS model averaging estimators with the weight vectors belonging to a continuous set, which includes the discrete weight set used in Hansen (2007) as its proper subset.
AB - Consider a regression model with infinitely many parameters and time series errors. We are interested in choosing weights for averaging across generalized least squares (GLS) estimators obtained from a set of approximating models. However, GLS estimators, depending on the unknown inverse covariance matrix of the errors, are usually infeasible. We therefore construct feasible generalized least squares (FGLS) estimators using a consistent estimator of the unknown inverse matrix. Based on this inverse covariance matrix estimator and FGLS estimators, we develop a feasible autocovariance-corrected Mallows model averaging criterion to select weights, thereby providing an FGLS model averaging estimator of the true regression function. We show that the generalized squared error loss of our averaging estimator is asymptotically equivalent to the minimum one among those of GLS model averaging estimators with the weight vectors belonging to a continuous set, which includes the discrete weight set used in Hansen (2007) as its proper subset.
KW - Asymptotic efficiency
KW - Autocovariance-corrected Mallows model averaging
KW - Banded Cholesky factorization
KW - Feasible generalized least squares estimator
KW - High-dimensional covariance matrix
KW - Time series errors
UR - http://www.scopus.com/inward/record.url?scp=84945454995&partnerID=8YFLogxK
U2 - 10.1016/j.jeconom.2015.03.026
DO - 10.1016/j.jeconom.2015.03.026
M3 - 期刊論文
AN - SCOPUS:84945454995
SN - 0304-4076
VL - 189
SP - 321
EP - 334
JO - Journal of Econometrics
JF - Journal of Econometrics
IS - 2
ER -