Time series multiple channel convolutional neural network with attention-based long short- term memory for predicting bearing remaining useful life

Jehn Ruey Jiang, Juei En Lee, Yi Ming Zeng

研究成果: 雜誌貢獻期刊論文同行評審

29 引文 斯高帕斯(Scopus)

摘要

This paper proposes two deep learning methods for remaining useful life (RUL) prediction of bearings. The methods have the advantageous end-to-end property that they take raw data as input and generate the predicted RUL directly. They are TSMC-CNN, which stands for the time series multiple channel convolutional neural network, and TSMC-CNN-ALSTM, which stands for the TSMC-CNN integrated with the attention-based long short-term memory (ALSTM) network. The proposed methods divide a time series into multiple channels and take advantage of the convolutional neural network (CNN), the long short-term memory (LSTM) network, and the attention-based mechanism for boosting performance. The CNN performs well for extracting features from data with multiple channels; dividing a time series into multiple channels helps the CNN extract relationship among far-apart data points. The LSTM network is excellent for processing temporal data; the attention-based mechanism allows the LSTM network to focus on different features at different time steps for better prediction accuracy. PRONOSTIA bearing operation datasets are applied to the proposed methods for the purpose of performance evaluation and comparison. The comparison results show that the proposed methods outperform the others in terms of the mean absolute error (MAE) and the root mean squared error (RMSE) of RUL prediction.

原文???core.languages.en_GB???
文章編號166
期刊Sensors (Switzerland)
20
發行號1
DOIs
出版狀態已出版 - 1 1月 2020

指紋

深入研究「Time series multiple channel convolutional neural network with attention-based long short- term memory for predicting bearing remaining useful life」主題。共同形成了獨特的指紋。

引用此