摘要
Thermoelectric materials are considered promising candidates for thermal energy conversion. This study presents the fabrication of Zn- and Ce-alloyed In2O3 with a porous structure. The electrical conductivity was improved by the alloying effect and an ultra-low thermal conductivity was observed owing to the porous structure, which concomitantly provide a distinct enhancement of ZT. However, SiO2 nanoparticle additives react with the matrix to form a third-phase impurity, which weakens the electrical conductivity and increases the thermal conductivity. A thermoelectric module was constructed for the purpose of thermal heat energy conversion. Our experimental results proved that both an enhancement in electrical conductivity and a suppression in thermal conductivity could be achieved through nano-engineering. This approach presents a feasible route to synthesize porous thermoelectric oxides, and provides insight into the effect of additives; moreover, this approach is a cost-effective method for the fabrication of thermoelectric oxides without traditional hot-pressing and spark-plasma-sintering processes.
原文 | ???core.languages.en_GB??? |
---|---|
文章編號 | 135712 |
期刊 | Nanotechnology |
卷 | 33 |
發行號 | 13 |
DOIs | |
出版狀態 | 已出版 - 26 3月 2022 |