TY - JOUR
T1 - Theoretical analysis based on fundamental functions of thin plate and experimental measurement for vibration characteristics of a plate coupled with liquid
AU - Liao, Chan Yi
AU - Wu, Yi Chuang
AU - Chang, Ching Yuan
AU - Ma, Chien Ching
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2017/4/28
Y1 - 2017/4/28
N2 - This study combined theoretical, experimental, and numerical analysis to investigate the vibration characteristics of a thin rectangular plate positioned horizontally at the bottom of a rectangular container filled with liquid. Flow field pressure was derived using an equation governing the behavior of incompressible fluids. Analytic solutions to vibrations in a thin plate in air served as the fundamental function of the thin plate coupled with liquid. We then used liquid pressure, and the out-of-plane deflection of the thin plate for the construction of frequency response functions for the analysis of vibration characteristics in the liquid-plate coupling system. Two experimental methods were employed to measure the vibration characteristics of the thin plate immersed in water. The first involved using sensors of polyvinylidene difluoride (PVDF) to measure transient signals of fluid-plate system subjected an impact at the thin plate. These were then converted to the frequency domain in order to obtain the resonant frequencies of the fluid-plate coupling system. The second method was amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), which was used to measure the dynamic characteristics of the thin plate in the flow field. This method was paired with the image processing techniques, temporal speckle pattern interferometry (TSPI) and temporal standard deviation (TSTD), to obtain clear mode shapes of the thin plate and resonant frequencies. Comparison of the results from theoretical analysis, finite element method, and experimental measurements confirmed the accuracy of our theoretical analysis, which was superior to the conventional approach based on beam mode shape functions. The experimental methods proposed in this study can be used to measure the resonant frequencies of underwater thin plates, and clear mode shapes can be obtained using AF-ESPI. Our results indicate that the resonant frequencies of thin plates underwater are lower than those in air. To a limited extent, increasing the depth of water enhanced the reduction of resonant frequencies.
AB - This study combined theoretical, experimental, and numerical analysis to investigate the vibration characteristics of a thin rectangular plate positioned horizontally at the bottom of a rectangular container filled with liquid. Flow field pressure was derived using an equation governing the behavior of incompressible fluids. Analytic solutions to vibrations in a thin plate in air served as the fundamental function of the thin plate coupled with liquid. We then used liquid pressure, and the out-of-plane deflection of the thin plate for the construction of frequency response functions for the analysis of vibration characteristics in the liquid-plate coupling system. Two experimental methods were employed to measure the vibration characteristics of the thin plate immersed in water. The first involved using sensors of polyvinylidene difluoride (PVDF) to measure transient signals of fluid-plate system subjected an impact at the thin plate. These were then converted to the frequency domain in order to obtain the resonant frequencies of the fluid-plate coupling system. The second method was amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), which was used to measure the dynamic characteristics of the thin plate in the flow field. This method was paired with the image processing techniques, temporal speckle pattern interferometry (TSPI) and temporal standard deviation (TSTD), to obtain clear mode shapes of the thin plate and resonant frequencies. Comparison of the results from theoretical analysis, finite element method, and experimental measurements confirmed the accuracy of our theoretical analysis, which was superior to the conventional approach based on beam mode shape functions. The experimental methods proposed in this study can be used to measure the resonant frequencies of underwater thin plates, and clear mode shapes can be obtained using AF-ESPI. Our results indicate that the resonant frequencies of thin plates underwater are lower than those in air. To a limited extent, increasing the depth of water enhanced the reduction of resonant frequencies.
KW - Electronic speckle pattern interferometry
KW - Fluid-plate coupling system
KW - Fundamental function
KW - Image processing techniques
KW - Thin plate
KW - Vibration characteristics
UR - http://www.scopus.com/inward/record.url?scp=85011024090&partnerID=8YFLogxK
U2 - 10.1016/j.jsv.2017.01.023
DO - 10.1016/j.jsv.2017.01.023
M3 - 期刊論文
AN - SCOPUS:85011024090
SN - 0022-460X
VL - 394
SP - 545
EP - 574
JO - Journal of Sound and Vibration
JF - Journal of Sound and Vibration
ER -