The Shapley Value in Machine Learning

Benedek Rozemberczki, Lauren Watson, Péter Bayer, Hao Tsung Yang, Olivér Kiss, Sebastian Nilsson, Rik Sarkar

研究成果: 書貢獻/報告類型會議論文篇章同行評審

32 引文 斯高帕斯(Scopus)

摘要

Over the last few years, the Shapley value, a solution concept from cooperative game theory, has found numerous applications in machine learning. In this paper, we first discuss fundamental concepts of cooperative game theory and axiomatic properties of the Shapley value. Then, we give an overview of the most important applications of the Shapley value in machine learning: feature selection, explainability, multi-agent reinforcement learning, ensemble pruning, and data valuation. We examine the most crucial limitations of the Shapley value and point out directions for future research.

原文???core.languages.en_GB???
主出版物標題Proceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI 2022
編輯Luc De Raedt, Luc De Raedt
發行者International Joint Conferences on Artificial Intelligence
頁面5572-5579
頁數8
ISBN(電子)9781956792003
出版狀態已出版 - 2022
事件31st International Joint Conference on Artificial Intelligence, IJCAI 2022 - Vienna, Austria
持續時間: 23 7月 202229 7月 2022

出版系列

名字IJCAI International Joint Conference on Artificial Intelligence
ISSN(列印)1045-0823

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???31st International Joint Conference on Artificial Intelligence, IJCAI 2022
國家/地區Austria
城市Vienna
期間23/07/2229/07/22

指紋

深入研究「The Shapley Value in Machine Learning」主題。共同形成了獨特的指紋。

引用此