The effects of substrate-mediated electrical stimulation on the promotion of osteogenic differentiation and its optimization

Wei Wen Hu, Tun Chi Chen, Chia Wen Tsao, Yu Che Cheng

研究成果: 雜誌貢獻期刊論文同行評審

29 引文 斯高帕斯(Scopus)

摘要

To explore the effect of electrical stimulation (ES) on osteogenesis, a polypyrrole (PPy)-made electrical culture system was developed to provide a direct-current electric field (DCEF). This DCEF device was applied to treat differentiated rat bone marrow stromal cells (rBMSCs) once in different stages of osteo-differentation to investigate its temporal effects. The mineralization results showed that the DCEF treatment not only accelerated cell differentiation but also promoted the saturation levels, and the ES on day 8 was the group demonstrated the optimal result. The gene regulation analysis indicated that the DCEF treatment immediately increased the levels of genes related to osteo-differentiation, especially Runx2. Because Runx2 is a crucial transcriptional factor of osteogenesis, the ES-caused improvement of mineralization was likely contributed by the extension of its expression. Further, different ES modes were investigated of their efficacy on bone matrix deposition. Square waves with different parameters including frequency, offset, amplitude, and duty cycle were systematically examined. In contrast to constant voltage, square waves demonstrated periodical changes of current through substrate to significantly improve mineralization, and the efficiencies highly depended on both frequency and intensity. Through this comprehensive study, DCEF treating condition was optimized, which should be beneficial to its application on osteogenesis promotion.

原文???core.languages.en_GB???
頁(從 - 到)1607-1619
頁數13
期刊Journal of Biomedical Materials Research - Part B Applied Biomaterials
107
發行號5
DOIs
出版狀態已出版 - 7月 2019

指紋

深入研究「The effects of substrate-mediated electrical stimulation on the promotion of osteogenic differentiation and its optimization」主題。共同形成了獨特的指紋。

引用此