TY - JOUR
T1 - The Dark Energy Survey
T2 - Cosmology Results with ∼1500 New High-redshift Type Ia Supernovae Using the Full 5 yr Data Set
AU - DES Collaboration
AU - Abbott, T. M.C.
AU - Acevedo, M.
AU - Aguena, M.
AU - Alarcon, A.
AU - Allam, S.
AU - Alves, O.
AU - Amon, A.
AU - Andrade-Oliveira, F.
AU - Annis, J.
AU - Armstrong, P.
AU - Asorey, J.
AU - Avila, S.
AU - Bacon, D.
AU - Bassett, B. A.
AU - Bechtol, K.
AU - Bernardinelli, P. H.
AU - Bernstein, G. M.
AU - Bertin, E.
AU - Blazek, J.
AU - Bocquet, S.
AU - Brooks, D.
AU - Brout, D.
AU - Buckley-Geer, E.
AU - Burke, D. L.
AU - Camacho, H.
AU - Camilleri, R.
AU - Campos, A.
AU - Carnero Rosell, A.
AU - Carollo, D.
AU - Carr, A.
AU - Carretero, J.
AU - Castander, F. J.
AU - Cawthon, R.
AU - Chang, C.
AU - Chen, R.
AU - Choi, A.
AU - Conselice, C.
AU - Costanzi, M.
AU - da Costa, L. N.
AU - Crocce, M.
AU - Davis, T. M.
AU - DePoy, D. L.
AU - Desai, S.
AU - Diehl, H. T.
AU - Dixon, M.
AU - Dodelson, S.
AU - Doel, P.
AU - Doux, C.
AU - Drlica-Wagner, A.
AU - Pan, Y. C.
N1 - Publisher Copyright:
© 2024. The Author(s). Published by the American Astronomical Society.
PY - 2024/9/1
Y1 - 2024/9/1
N2 - We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 < z < 1.13 that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-quality z > 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 < z < 0.10. Using SN data alone and including systematic uncertainties, we find ΩM = 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration (q0 < 0 in ΛCDM) with over 5σ confidence. We find (Ωm, w) = (0.264-0.096+0.074, 80-0.16+0.14) in flat wCDM. For flat w0waCDM, we find (ΩM,w0, wa) = (0.495-0.043+0.033, -0.36-0.30+0.36 -8.8-4.5+3.7, consistent with a constant equation of state to within ∼2σ. Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (ΩM, w) = (0.321 ± 0.007, -0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2σ. Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses.
AB - We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 < z < 1.13 that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-quality z > 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 < z < 0.10. Using SN data alone and including systematic uncertainties, we find ΩM = 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration (q0 < 0 in ΛCDM) with over 5σ confidence. We find (Ωm, w) = (0.264-0.096+0.074, 80-0.16+0.14) in flat wCDM. For flat w0waCDM, we find (ΩM,w0, wa) = (0.495-0.043+0.033, -0.36-0.30+0.36 -8.8-4.5+3.7, consistent with a constant equation of state to within ∼2σ. Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (ΩM, w) = (0.321 ± 0.007, -0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2σ. Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses.
UR - http://www.scopus.com/inward/record.url?scp=85207814398&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/ad6f9f
DO - 10.3847/2041-8213/ad6f9f
M3 - 期刊論文
AN - SCOPUS:85207814398
SN - 2041-8205
VL - 973
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 1
M1 - L14
ER -