摘要
The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 (June 1998) in a 51.7° orbit at altitudes between 320 and 390 km. A search for antihelium nuclei in the rigidity range 1-140 GV was performed. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 × 10-6 was obtained. The high energy proton, electron, positron, helium, antiproton and deuterium spectra were accurately measured. For each particle and nuclei two distinct spectra were observed: a higher energy spectrum and a substantial second spectrum. Positrons in the second spectrum were found to be much more abundant than electrons. Tracing particles from the second spectra shows that most of them travel for an extended period of time in the geomagnetic field, and that the positive particles (p and e+) and negative ones (e-) originate from two complementary geographic regions. The second helium spectrum flux over the energy range 0.1-1.2 GeV/nucleon was measured to be (6.3 ± 0.9) × 10-3(m2 s sr)-1. Over 90 percent of the helium flux was determined to be 3He at the 90% confidence level.
原文 | ???core.languages.en_GB??? |
---|---|
頁(從 - 到) | 331-405 |
頁數 | 75 |
期刊 | Physics Reports |
卷 | 366 |
發行號 | 6 |
DOIs | |
出版狀態 | 已出版 - 2002 |
指紋
深入研究「The Alpha Magnetic Spectrometer (AMS) on the international space station: Part I - Results from the test flight on the space shuttle」主題。共同形成了獨特的指紋。引用此
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
The Alpha Magnetic Spectrometer (AMS) on the international space station : Part I - Results from the test flight on the space shuttle. / Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Cho, K.; Choi, M. J.; Choi, Y. Y.; Chuang, Y. L.; Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Cristinziani, M.; da Cunha, J. P.; Dai, T. S.; Delgado, C.; Deus, J. D.; Dinu, N.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Emonet, P.; Engelberg, J.; Eppling, F. J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P. H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu; Gervasi, M.; Giusti, P.; Grandi, D.; Grimms, O.; Gu, W. Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M. A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kim, M. Y.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Lanciotti, E.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.; Levtchenko, P.; Liu, C. L.; Liu, H. T.; Lopes, I.; Lu, G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti, A.; Mayet, F.; McNeil, R. R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Postolache, V.; Produit, N.; Rancoita, P. G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser, U.; Rossin, C.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Sbarra, C.; Schael, S.; von Dratzig, A. Schultz; Schwering, G.; Scolieri, G.; Seo, E. S.; Shin, J. W.; Shoutko, V.; Shoumilov, E.; Siedling, R.; Son, D.; Song, T.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C.C.; Ting, S. M.; Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.; Vandenhirtz, J.; Velcea, F.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; von Gunten, H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, B. C.; Wang, J. Z.; Wang, Y. H.; Wiik, K.; Williams, C.; WU, S. X.; Xia, P. C.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Yeh, P.; Xu, Z. Z.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P.
於: Physics Reports, 卷 366, 編號 6, 2002, p. 331-405.研究成果: 雜誌貢獻 › 回顧評介論文 › 同行評審
TY - JOUR
T1 - The Alpha Magnetic Spectrometer (AMS) on the international space station
T2 - Part I - Results from the test flight on the space shuttle
AU - Aguilar, M.
AU - Alcaraz, J.
AU - Allaby, J.
AU - Alpat, B.
AU - Ambrosi, G.
AU - Anderhub, H.
AU - Ao, L.
AU - Arefiev, A.
AU - Azzarello, P.
AU - Babucci, E.
AU - Baldini, L.
AU - Basile, M.
AU - Barancourt, D.
AU - Barao, F.
AU - Barbier, G.
AU - Barreira, G.
AU - Battiston, R.
AU - Becker, R.
AU - Becker, U.
AU - Bellagamba, L.
AU - Béné, P.
AU - Berdugo, J.
AU - Berges, P.
AU - Bertucci, B.
AU - Biland, A.
AU - Bizzaglia, S.
AU - Blasko, S.
AU - Boella, G.
AU - Boschini, M.
AU - Bourquin, M.
AU - Brocco, L.
AU - Bruni, G.
AU - Buénerd, M.
AU - Burger, J. D.
AU - Burger, W. J.
AU - Cai, X. D.
AU - Camps, C.
AU - Cannarsa, P.
AU - Capell, M.
AU - Casadei, D.
AU - Casaus, J.
AU - Castellini, G.
AU - Cecchi, C.
AU - Chang, Y. H.
AU - Chen, H. F.
AU - Chen, H. S.
AU - Chen, Z. G.
AU - Chernoplekov, N. A.
AU - Chiueh, T. H.
AU - Cho, K.
AU - Choi, M. J.
AU - Choi, Y. Y.
AU - Chuang, Y. L.
AU - Cindolo, F.
AU - Commichau, V.
AU - Contin, A.
AU - Cortina-Gil, E.
AU - Cristinziani, M.
AU - da Cunha, J. P.
AU - Dai, T. S.
AU - Delgado, C.
AU - Deus, J. D.
AU - Dinu, N.
AU - Djambazov, L.
AU - D'Antone, I.
AU - Dong, Z. R.
AU - Emonet, P.
AU - Engelberg, J.
AU - Eppling, F. J.
AU - Eronen, T.
AU - Esposito, G.
AU - Extermann, P.
AU - Favier, J.
AU - Fiandrini, E.
AU - Fisher, P. H.
AU - Fluegge, G.
AU - Fouque, N.
AU - Galaktionov, Yu
AU - Gervasi, M.
AU - Giusti, P.
AU - Grandi, D.
AU - Grimms, O.
AU - Gu, W. Q.
AU - Hangarter, K.
AU - Hasan, A.
AU - Hermel, V.
AU - Hofer, H.
AU - Huang, M. A.
AU - Hungerford, W.
AU - Ionica, M.
AU - Ionica, R.
AU - Jongmanns, M.
AU - Karlamaa, K.
AU - Karpinski, W.
AU - Kenney, G.
AU - Kenny, J.
AU - Kim, D. H.
AU - Kim, G. N.
AU - Kim, K. S.
AU - Kim, M. Y.
AU - Klimentov, A.
AU - Kossakowski, R.
AU - Koutsenko, V.
AU - Kraeber, M.
AU - Laborie, G.
AU - Laitinen, T.
AU - Lamanna, G.
AU - Lanciotti, E.
AU - Laurenti, G.
AU - Lebedev, A.
AU - Lechanoine-Leluc, C.
AU - Lee, M. W.
AU - Lee, S. C.
AU - Levi, G.
AU - Levtchenko, P.
AU - Liu, C. L.
AU - Liu, H. T.
AU - Lopes, I.
AU - Lu, G.
AU - Lu, Y. S.
AU - Lübelsmeyer, K.
AU - Luckey, D.
AU - Lustermann, W.
AU - Maña, C.
AU - Margotti, A.
AU - Mayet, F.
AU - McNeil, R. R.
AU - Meillon, B.
AU - Menichelli, M.
AU - Mihul, A.
AU - Mourao, A.
AU - Mujunen, A.
AU - Palmonari, F.
AU - Papi, A.
AU - Park, H. B.
AU - Park, W. H.
AU - Pauluzzi, M.
AU - Pauss, F.
AU - Perrin, E.
AU - Pesci, A.
AU - Pevsner, A.
AU - Pimenta, M.
AU - Plyaskin, V.
AU - Pojidaev, V.
AU - Pohl, M.
AU - Postolache, V.
AU - Produit, N.
AU - Rancoita, P. G.
AU - Rapin, D.
AU - Raupach, F.
AU - Ren, D.
AU - Ren, Z.
AU - Ribordy, M.
AU - Richeux, J. P.
AU - Riihonen, E.
AU - Ritakari, J.
AU - Ro, S.
AU - Roeser, U.
AU - Rossin, C.
AU - Sagdeev, R.
AU - Santos, D.
AU - Sartorelli, G.
AU - Sbarra, C.
AU - Schael, S.
AU - von Dratzig, A. Schultz
AU - Schwering, G.
AU - Scolieri, G.
AU - Seo, E. S.
AU - Shin, J. W.
AU - Shoutko, V.
AU - Shoumilov, E.
AU - Siedling, R.
AU - Son, D.
AU - Song, T.
AU - Steuer, M.
AU - Sun, G. S.
AU - Suter, H.
AU - Tang, X. W.
AU - Ting, Samuel C.C.
AU - Ting, S. M.
AU - Tornikoski, M.
AU - Torsti, J.
AU - Trümper, J.
AU - Ulbricht, J.
AU - Urpo, S.
AU - Valtonen, E.
AU - Vandenhirtz, J.
AU - Velcea, F.
AU - Velikhov, E.
AU - Verlaat, B.
AU - Vetlitsky, I.
AU - Vezzu, F.
AU - Vialle, J. P.
AU - Viertel, G.
AU - Vité, D.
AU - von Gunten, H.
AU - Waldmeier Wicki, S.
AU - Wallraff, W.
AU - Wang, B. C.
AU - Wang, J. Z.
AU - Wang, Y. H.
AU - Wiik, K.
AU - Williams, C.
AU - WU, S. X.
AU - Xia, P. C.
AU - Yan, J. L.
AU - Yan, L. G.
AU - Yang, C. G.
AU - Yang, J.
AU - Yang, M.
AU - Ye, S. W.
AU - Yeh, P.
AU - Xu, Z. Z.
AU - Zhang, H. Y.
AU - Zhang, Z. P.
AU - Zhao, D. X.
AU - Zhu, G. Y.
AU - Zhu, W. Z.
AU - Zhuang, H. L.
AU - Zichichi, A.
AU - Zimmermann, B.
AU - Zuccon, P.
PY - 2002
Y1 - 2002
N2 - The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 (June 1998) in a 51.7° orbit at altitudes between 320 and 390 km. A search for antihelium nuclei in the rigidity range 1-140 GV was performed. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 × 10-6 was obtained. The high energy proton, electron, positron, helium, antiproton and deuterium spectra were accurately measured. For each particle and nuclei two distinct spectra were observed: a higher energy spectrum and a substantial second spectrum. Positrons in the second spectrum were found to be much more abundant than electrons. Tracing particles from the second spectra shows that most of them travel for an extended period of time in the geomagnetic field, and that the positive particles (p and e+) and negative ones (e-) originate from two complementary geographic regions. The second helium spectrum flux over the energy range 0.1-1.2 GeV/nucleon was measured to be (6.3 ± 0.9) × 10-3(m2 s sr)-1. Over 90 percent of the helium flux was determined to be 3He at the 90% confidence level.
AB - The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 (June 1998) in a 51.7° orbit at altitudes between 320 and 390 km. A search for antihelium nuclei in the rigidity range 1-140 GV was performed. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 × 10-6 was obtained. The high energy proton, electron, positron, helium, antiproton and deuterium spectra were accurately measured. For each particle and nuclei two distinct spectra were observed: a higher energy spectrum and a substantial second spectrum. Positrons in the second spectrum were found to be much more abundant than electrons. Tracing particles from the second spectra shows that most of them travel for an extended period of time in the geomagnetic field, and that the positive particles (p and e+) and negative ones (e-) originate from two complementary geographic regions. The second helium spectrum flux over the energy range 0.1-1.2 GeV/nucleon was measured to be (6.3 ± 0.9) × 10-3(m2 s sr)-1. Over 90 percent of the helium flux was determined to be 3He at the 90% confidence level.
UR - http://www.scopus.com/inward/record.url?scp=0036296546&partnerID=8YFLogxK
U2 - 10.1016/S0370-1573(02)00013-3
DO - 10.1016/S0370-1573(02)00013-3
M3 - 回顧評介論文
AN - SCOPUS:0036296546
VL - 366
SP - 331
EP - 405
JO - Physics Reports
JF - Physics Reports
SN - 0370-1573
IS - 6
ER -