TY - JOUR
T1 - Suppression of cardiac alternans by alternating-period-feedback stimulations
AU - Sridhar, S.
AU - Le, Duy Manh
AU - Mi, Yun Chieh
AU - Sinha, Sitabhra
AU - Lai, Pik Yin
AU - Chan, C. K.
PY - 2013/4/15
Y1 - 2013/4/15
N2 - Alternans response, comprising a sequence of alternating long and short action potential durations in heart tissue, seen during rapid periodic pacing can lead to conduction block resulting in potentially fatal cardiac failure. A method of pacing with feedback control is proposed to reduce the alternans and therefore the probability of subsequent cardiac failure. The reduction is achieved by feedback control using small perturbations of constant magnitude to the original, alternans-generating pacing period T, viz., using sequences of two alternating periods of T+ΔT and T-ΔT, with ΔTT. Such a control scheme for alternans suppression is demonstrated experimentally in isolated whole heart experiments. This alternans suppression scheme is further confirmed and investigated in detail by simulations of ion-channel-based cardiac models both for a single cell and in one-dimensional spatially extended systems. The mechanism of the success of our method can be understood in terms of dynamics in phase space, viz., as the state of activity of the cell being confined within a narrow volume of phase space for the duration of control, resulting in extremely diminished variation in successive action potential durations. Our method is much more robust to noise than previous alternans reduction techniques based on fixed point stabilization and should thus be more efficient in terms of experimental implementation, which has implications for clinical treatment for arrhythmia.
AB - Alternans response, comprising a sequence of alternating long and short action potential durations in heart tissue, seen during rapid periodic pacing can lead to conduction block resulting in potentially fatal cardiac failure. A method of pacing with feedback control is proposed to reduce the alternans and therefore the probability of subsequent cardiac failure. The reduction is achieved by feedback control using small perturbations of constant magnitude to the original, alternans-generating pacing period T, viz., using sequences of two alternating periods of T+ΔT and T-ΔT, with ΔTT. Such a control scheme for alternans suppression is demonstrated experimentally in isolated whole heart experiments. This alternans suppression scheme is further confirmed and investigated in detail by simulations of ion-channel-based cardiac models both for a single cell and in one-dimensional spatially extended systems. The mechanism of the success of our method can be understood in terms of dynamics in phase space, viz., as the state of activity of the cell being confined within a narrow volume of phase space for the duration of control, resulting in extremely diminished variation in successive action potential durations. Our method is much more robust to noise than previous alternans reduction techniques based on fixed point stabilization and should thus be more efficient in terms of experimental implementation, which has implications for clinical treatment for arrhythmia.
UR - http://www.scopus.com/inward/record.url?scp=84876929625&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.87.042712
DO - 10.1103/PhysRevE.87.042712
M3 - 期刊論文
C2 - 23679454
AN - SCOPUS:84876929625
SN - 1539-3755
VL - 87
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 4
M1 - 042712
ER -