Suppressed Umklapp scattering of β-FeSi2 thin film and single crystalline nanowires

Cheng Lun Hsin, Yu Ting Liu, Yue Yun Tsai

研究成果: 雜誌貢獻期刊論文同行評審

8 引文 斯高帕斯(Scopus)

摘要

Thermal conductivity is an intriguing physical property in the nanometer or quantum regime. In this study, we report the growth and thermal conductivity of β-FeSi2 thin film and single crystalline nanowires. The sample structures and chemical composition were identified by standard microscopy techniques. The temperature-dependent thermal conductivity of the thin film was measured by the 3ω method, whereas that of the nanowires was conducted by a suspended pattern technique. Temperature-dependent thermal conductivity was found to increase gradually from 300 to 500 K due to the effect of surface scattering. The experimental evidence presented herein is the suppression of Umklapp transport at the nanoscale near room temperature and the potential application of nanoengineered β-FeSi2 for future design of thermoelectric materials.

原文???core.languages.en_GB???
文章編號485702
期刊Nanotechnology
28
發行號48
DOIs
出版狀態已出版 - 6 11月 2017

指紋

深入研究「Suppressed Umklapp scattering of β-FeSi2 thin film and single crystalline nanowires」主題。共同形成了獨特的指紋。

引用此