Sub-Riemannian calculus and monotonicity of the perimeter for graphical strips

D. Danielli, N. Garofalo, D. M. Nhieu

研究成果: 雜誌貢獻期刊論文同行評審

2 引文 斯高帕斯(Scopus)

摘要

We consider the class of minimal surfaces given by the graphical strips S in the Heisenberg group H1 and we prove that for points p along the center of H1 the quantity is monotone increasing. Here, Q is the homogeneous dimension of H1. We also prove that these minimal surfaces have maximum volume growth at infinity.

原文???core.languages.en_GB???
頁(從 - 到)617-637
頁數21
期刊Mathematische Zeitschrift
265
發行號3
DOIs
出版狀態已出版 - 7月 2010

指紋

深入研究「Sub-Riemannian calculus and monotonicity of the perimeter for graphical strips」主題。共同形成了獨特的指紋。

引用此