TY - JOUR
T1 - Strong ionospheric field-aligned currents for radial interplanetary magnetic fields
AU - Wang, Hui
AU - Lühr, Hermann
AU - Shue, Jih Hong
AU - Frey, Harald U.
AU - Kervalishvili, Guram
AU - Huang, Tao
AU - Cao, Xue
AU - Pi, Gilbert
AU - Ridley, Aaron J.
PY - 2014/5
Y1 - 2014/5
N2 - The present work has investigated the configuration of field-aligned currents (FACs) during a long period of radial interplanetary magnetic field (IMF) on 19 May 2002 by using high-resolution and precise vector magnetic field measurements of CHAMP satellite. During the interest period IMF By and Bz are weakly positive and Bx keeps pointing to the Earth for almost 10 h. The geomagnetic indices Dst is about -40 nT and AE about 100 nT on average. The cross polar cap potential calculated from Assimilative Mapping of Ionospheric Electrodynamics and derived from DMSP observations have average values of 10-20 kV. Obvious hemispheric differences are shown in the configurations of FACs on the dayside and nightside. At the south pole FACs diminish in intensity to magnitudes of about 0.1 μA/m2, the plasma convection maintains two-cell flow pattern, and the thermospheric density is quite low. However, there are obvious activities in the northern cusp region. One pair of FACs with a downward leg toward the pole and upward leg on the equatorward side emerge in the northern cusp region, exhibiting opposite polarity to FACs typical for duskward IMF orientation. An obvious sunward plasma flow channel persists during the whole period. These ionospheric features might be manifestations of an efficient magnetic reconnection process occurring in the northern magnetospheric flanks at high latitude. The enhanced ionospheric current systems might deposit large amount of Joule heating into the thermosphere. The air densities in the cusp region get enhanced and subsequently propagate equatorward on the dayside. Although geomagnetic indices during the radial IMF indicate low-level activity, the present study demonstrates that there are prevailing energy inputs from the magnetosphere to both the ionosphere and thermosphere in the northern polar cusp region. Key Points A pair of strong FACs emerges with opposite polarity to DPY FACs Obvious sunward plasma flow channel persists during the period Enhanced air densities are found in the cusp region
AB - The present work has investigated the configuration of field-aligned currents (FACs) during a long period of radial interplanetary magnetic field (IMF) on 19 May 2002 by using high-resolution and precise vector magnetic field measurements of CHAMP satellite. During the interest period IMF By and Bz are weakly positive and Bx keeps pointing to the Earth for almost 10 h. The geomagnetic indices Dst is about -40 nT and AE about 100 nT on average. The cross polar cap potential calculated from Assimilative Mapping of Ionospheric Electrodynamics and derived from DMSP observations have average values of 10-20 kV. Obvious hemispheric differences are shown in the configurations of FACs on the dayside and nightside. At the south pole FACs diminish in intensity to magnitudes of about 0.1 μA/m2, the plasma convection maintains two-cell flow pattern, and the thermospheric density is quite low. However, there are obvious activities in the northern cusp region. One pair of FACs with a downward leg toward the pole and upward leg on the equatorward side emerge in the northern cusp region, exhibiting opposite polarity to FACs typical for duskward IMF orientation. An obvious sunward plasma flow channel persists during the whole period. These ionospheric features might be manifestations of an efficient magnetic reconnection process occurring in the northern magnetospheric flanks at high latitude. The enhanced ionospheric current systems might deposit large amount of Joule heating into the thermosphere. The air densities in the cusp region get enhanced and subsequently propagate equatorward on the dayside. Although geomagnetic indices during the radial IMF indicate low-level activity, the present study demonstrates that there are prevailing energy inputs from the magnetosphere to both the ionosphere and thermosphere in the northern polar cusp region. Key Points A pair of strong FACs emerges with opposite polarity to DPY FACs Obvious sunward plasma flow channel persists during the period Enhanced air densities are found in the cusp region
KW - air upwelling
KW - field-aligned currents
KW - radial interplanetary magnetic field
UR - http://www.scopus.com/inward/record.url?scp=84902462519&partnerID=8YFLogxK
U2 - 10.1002/2014JA019951
DO - 10.1002/2014JA019951
M3 - 期刊論文
AN - SCOPUS:84902462519
SN - 2169-9380
VL - 119
SP - 3979
EP - 3995
JO - Journal of Geophysical Research: Space Physics
JF - Journal of Geophysical Research: Space Physics
IS - 5
ER -