Statistical Comparison ARIMA Order Performance In Stock Market

Chanatip Deemee, Kirati Ngampis, Thanapon Noraset, Tipajin Thaipisutikul, Min Te Sun, Kotcharat Kitchat

研究成果: 書貢獻/報告類型會議論文篇章同行評審

1 引文 斯高帕斯(Scopus)

摘要

Stock market forecasting is important for financial decision-making and risk management. Among the various time series models, the Autoregressive (p) Integrated (d) Moving Average (q) (ARIMA) model has been widely adopted for its simplicity and effectiveness in capturing temporal patterns. However, selecting appropriate ARIMA orders remains a crucial and challenging task, impacting the accuracy of predictions. This paper presents a comprehensive statistical comparison of ARIMA order performance in the context of stock market forecasting. We examine the impact of different ARIMA model orders. Our study utilizes historic New York Stock Exchange (NYSE) stock price data. Our findings shed light on the complex interplay between ARIMA parameters and predictive accuracy, offering valuable insights for robust financial forecasting.

原文???core.languages.en_GB???
主出版物標題7th International Conference on Information Technology, InCIT 2023
發行者Institute of Electrical and Electronics Engineers Inc.
頁面81-85
頁數5
ISBN(電子)9798350358698
DOIs
出版狀態已出版 - 2023
事件7th International Conference on Information Technology, InCIT 2023 - Chiang Rai, Thailand
持續時間: 15 11月 202317 11月 2023

出版系列

名字7th International Conference on Information Technology, InCIT 2023

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???7th International Conference on Information Technology, InCIT 2023
國家/地區Thailand
城市Chiang Rai
期間15/11/2317/11/23

指紋

深入研究「Statistical Comparison ARIMA Order Performance In Stock Market」主題。共同形成了獨特的指紋。

引用此