State of Charge Estimation and Circuit Implementation for Lithium Battery Based on the Elman Neural Network Algorithm

Yang Chieh Ou, Muh Tian Shiue, Bing Jun Liu, Yi Fong Wang, Chii Shyang Kuo, Chih Feng Wu

研究成果: 書貢獻/報告類型會議論文篇章同行評審

1 引文 斯高帕斯(Scopus)

摘要

This paper establishes an estimation model for the battery State of Charge (SOC) estimation system based on the characteristics and suitable architecture of neural network models, utilizing the Elman neural network as the central model for neural network estimation. It replaces traditional estimation methods with a neural network-based approach to identify battery state characteristics. Through the parameter training module, battery characteristic parameters are identified based on historical charging and discharging data, and the real-time estimation module is updated with these parameters to facilitate deep learning chip planning. The paper conducts system simulation parameter training and chip design planning using Dynamic Stress Tests (DST), Federal Urban Driving Schedule (FUDS), and real driving data from BMW i3 2014 BEV (SOC 90% - 10%) and BMW i3 2014 BEV (SOC 56.8% - 9.9%). The real-time estimation module of the Elman Neural Network (ENN) model is verified using SMIMS Veri Enterprise Xilinx FPGA.

原文???core.languages.en_GB???
主出版物標題Proceedings - 2024 IEEE 6th Global Power, Energy and Communication Conference, GPECOM 2024
發行者Institute of Electrical and Electronics Engineers Inc.
頁面98-102
頁數5
ISBN(電子)9798350351088
DOIs
出版狀態已出版 - 2024
事件6th IEEE Global Power, Energy and Communication Conference, GPECOM 2024 - Budapest, Hungary
持續時間: 4 6月 20247 6月 2024

出版系列

名字Proceedings - 2024 IEEE 6th Global Power, Energy and Communication Conference, GPECOM 2024

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???6th IEEE Global Power, Energy and Communication Conference, GPECOM 2024
國家/地區Hungary
城市Budapest
期間4/06/247/06/24

指紋

深入研究「State of Charge Estimation and Circuit Implementation for Lithium Battery Based on the Elman Neural Network Algorithm」主題。共同形成了獨特的指紋。

引用此