每年專案
摘要
Let M be a complex manifold of dimension n with smooth connected boundary X. Assume that M‾ admits a holomorphic S1-action preserving the boundary X and the S1-action is transversal on X. We show that the ∂‾-Neumann Laplacian on M is transversally elliptic and as a consequence, the m-th Fourier component of the q-th Dolbeault cohomology group Hm q(M‾) is finite dimensional, for every m∈Z and every q=0,1,…,n. This enables us to define ∑j=0 n(−1)jdimHm j(M‾) the m-th Fourier component of the Euler characteristic on M and to study large m-behavior of Hm q(M‾). In this paper, we establish an index formula for ∑j=0 n(−1)jdimHm j(M‾) and Morse inequalities for Hm q(M‾).
原文 | ???core.languages.en_GB??? |
---|---|
文章編號 | 108558 |
期刊 | Journal of Functional Analysis |
卷 | 279 |
發行號 | 3 |
DOIs | |
出版狀態 | 已出版 - 15 8月 2020 |
指紋
深入研究「S1-equivariant Index theorems and Morse inequalities on complex manifolds with boundary」主題。共同形成了獨特的指紋。專案
- 2 已完成