S1-equivariant Index theorems and Morse inequalities on complex manifolds with boundary

Chin Yu Hsiao, Rung Tzung Huang, Xiaoshan Li, Guokuan Shao

研究成果: 雜誌貢獻期刊論文同行評審

3 引文 斯高帕斯(Scopus)

摘要

Let M be a complex manifold of dimension n with smooth connected boundary X. Assume that M‾ admits a holomorphic S1-action preserving the boundary X and the S1-action is transversal on X. We show that the ∂‾-Neumann Laplacian on M is transversally elliptic and as a consequence, the m-th Fourier component of the q-th Dolbeault cohomology group Hm q(M‾) is finite dimensional, for every m∈Z and every q=0,1,…,n. This enables us to define ∑j=0 n(−1)jdimHm j(M‾) the m-th Fourier component of the Euler characteristic on M and to study large m-behavior of Hm q(M‾). In this paper, we establish an index formula for ∑j=0 n(−1)jdimHm j(M‾) and Morse inequalities for Hm q(M‾).

原文???core.languages.en_GB???
文章編號108558
期刊Journal of Functional Analysis
279
發行號3
DOIs
出版狀態已出版 - 15 8月 2020

指紋

深入研究「S1-equivariant Index theorems and Morse inequalities on complex manifolds with boundary」主題。共同形成了獨特的指紋。

引用此