Spatial Search via Adaptive Submodularity and Deep Learning

Yu Chung Tsai, Bing Xian Lu, Kuo Shih Tseng

研究成果: 書貢獻/報告類型會議論文篇章同行評審

5 引文 斯高帕斯(Scopus)

摘要

Searching for the victim is the key part of search and rescue operations but finding an optimal search path is a NP-hard problem. Since the objective function of spatial search is submodular, greedy algorithms can generate near-optimal solutions. This research proposed an algorithm to enable an unmanned aerial vehicle (UAV) to adaptively search for a person in a 3D environment. The algorithm consists of adaptive submodularity and deep learning. The UAV learns the target distribution via the deep neural network. The learned networks can be applied to adaptive search for target that achieve (1-1/e) of the optimum. Experiments conducted with this algorithm demonstrate that the robot can search for the person faster than the benchmark approach.

原文???core.languages.en_GB???
主出版物標題2019 IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2019
發行者Institute of Electrical and Electronics Engineers Inc.
頁面112-113
頁數2
ISBN(電子)9781728107783
DOIs
出版狀態已出版 - 9月 2019
事件2019 IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2019 - Wurzburg, Germany
持續時間: 2 9月 20194 9月 2019

出版系列

名字2019 IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2019

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2019 IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2019
國家/地區Germany
城市Wurzburg
期間2/09/194/09/19

指紋

深入研究「Spatial Search via Adaptive Submodularity and Deep Learning」主題。共同形成了獨特的指紋。

引用此