Sources and Radiations of the Fermi Bubbles

Vladimir A. Dogiel, Chung Ming Ko

研究成果: 雜誌貢獻期刊論文同行評審

摘要

Two enigmatic gamma-ray features in the galactic central region, known as Fermi Bubbles (FBs), were found from Fermi-LAT data. An energy release, (e.g., by tidal disruption events in the Galactic Center, GC), generates a cavity with a shock that expands into the local ambient medium of the galactic halo. A decade or so ago, a phenomenological model of the FBs was suggested as a result of routine star disruptions by the supermassive black hole in the GC which might provide enough energy for large-scale structures, like the FBs. In 2020, analytical and numerical models of the FBs as a process of routine tidal disruption of stars near the GC were developed; these disruption events can provide enough cumulative energy to form and maintain large-scale structures like the FBs. The disruption events are expected to be (Formula presented.), providing an average power of energy release from the GC into the halo of (Formula presented.) erg (Formula presented.), which is needed to support the FBs. Analysis of the evolution of superbubbles in exponentially stratified disks concluded that the FB envelope would be destroyed by the Rayleigh–Taylor (RT) instabilities at late stages. The shell is composed of swept-up gas of the bubble, whose thickness is much thinner in comparison to the size of the envelope. We assume that hydrodynamic turbulence is excited in the FB envelope by the RT instability. In this case, the universal energy spectrum of turbulence may be developed in the inertial range of wavenumbers of fluctuations (the Kolmogorov–Obukhov spectrum). From our model we suppose the power of the FBs is transformed partly into the energy of hydrodynamic turbulence in the envelope. If so, hydrodynamic turbulence may generate MHD fluctuations, which accelerate cosmic rays there and generate gamma-ray and radio emission from the FBs. We hope that this model may interpret the observed nonthermal emission from the bubbles.

原文???core.languages.en_GB???
文章編號424
期刊Universe
10
發行號11
DOIs
出版狀態已出版 - 11月 2024

指紋

深入研究「Sources and Radiations of the Fermi Bubbles」主題。共同形成了獨特的指紋。

引用此