Solution-processed poly(vinylidene difluoride)/cellulose acetate/Li1+xAlxTi2-x(PO4)3 composite solid electrolyte for improving electrochemical performance of solid-state lithium-ion batteries at room temperature

Szu Chi Chao, Yen Shen Kuo, Pei Xuan Chen, Yi‐Hung H. Liu

研究成果: 雜誌貢獻期刊論文同行評審

6 引文 斯高帕斯(Scopus)

摘要

To enhance energy density and secure the safety of lithium-ion batteries, developing solid-state electrolytes is a promising strategy. In this study, a composite solid-state electrolyte (CSE) composed of poly(vinylidene difluoride) (PVDF)/cellulose acetate (CA) matrix, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, and Li1.3Al0.3Ti1.7(PO4)3 (LATP) fillers is developed via a facile solution-casting method. The PVDF/CA ratio, LiTFSI, and LATP fractions affect the crystallinity, structural porosity, and thermal and electrochemical stability of the PVDF/CA/LATP CSE. The optimized CSE (4P1C-40LT/20F) presents a high ionic conductivity of 4.9 × 10-4 S cm−1 and a wide electrochemical window up to 5.0 V vs. Li/Li+. A lithium iron phosphate-based cell containing the CSE delivers a high discharge capacity of over 160 mAh g−1 at 25 °C, outperforming its counterpart containing PVDF/CA polymer electrolyte. It also exhibits satisfactory cycling stability at 1C with approximately 90 % capacity retention at the 200th cycle. Additionally, its rate performance is promising, demonstrating a capacity retention of approximately 80 % under varied rates (2C/0.1C). The increased amorphous region, Li+ transportation pathways, and Li+ concentration of the 4P1C-40LT/20F CSE membrane facilitate Li+ migration within the CSE, thus improving the battery performance.

原文???core.languages.en_GB???
頁(從 - 到)306-314
頁數9
期刊Journal of Colloid and Interface Science
674
DOIs
出版狀態已出版 - 15 11月 2024

指紋

深入研究「Solution-processed poly(vinylidene difluoride)/cellulose acetate/Li1+xAlxTi2-x(PO4)3 composite solid electrolyte for improving electrochemical performance of solid-state lithium-ion batteries at room temperature」主題。共同形成了獨特的指紋。

引用此