摘要
The interaction between a solitary wave and a submerged circular plate of a finite thickness was investigated in this study. Analytical solutions based on the linear long wave theory were first derived to serve as the leading-order predictive tool for this physical process. While the analytical solutions provide an easy way to calculate the wave field, they are limited by the simplifying assumptions. To complement the analytical solutions, a 3D Navier-Stokes equation solver with the large eddy simulation turbulence model was employed. The numerical model was verified against the analytical solutions for nearly linear cases and then applied to study more nonlinear cases in which the analytical solutions were less accurate. Both the analytical solutions and the numerical results show that wave focusing occurs near the lee side of the circular plate, creating higher local wave heights than that of the incident wave. As the wave passes over the submerged plate, the plate experiences an uplifting net force, followed by a net force in the downward direction, and then an uplifting net force again. The flow and pressure fields and vortices were also examined. By presenting the analytical and numerical tools that can be used to study this problem, and discussing the overall physics of this process, it is hoped that this study paves the way for future studies on this subject.
原文 | ???core.languages.en_GB??? |
---|---|
文章編號 | 04020046 |
期刊 | Journal of Waterway, Port, Coastal and Ocean Engineering |
卷 | 147 |
發行號 | 1 |
DOIs | |
出版狀態 | 已出版 - 1 1月 2021 |