TY - JOUR
T1 - SkaSim – Scalable HPC Software for Molecular Simulation in the Chemical Industry
AU - Vrabec, Jadran
AU - Bernreuther, Martin
AU - Bungartz, Hans Joachim
AU - Chen, Wei Lin
AU - Cordes, Wilfried
AU - Fingerhut, Robin
AU - Glass, Colin W.
AU - Gmehling, Jürgen
AU - Hamburger, René
AU - Heilig, Manfred
AU - Heinen, Matthias
AU - Horsch, Martin T.
AU - Hsieh, Chieh Ming
AU - Hülsmann, Marco
AU - Jäger, Philip
AU - Klein, Peter
AU - Knauer, Sandra
AU - Köddermann, Thorsten
AU - Köster, Andreas
AU - Langenbach, Kai
AU - Lin, Shiang Tai
AU - Neumann, Philipp
AU - Rarey, Jürgen
AU - Reith, Dirk
AU - Rutkai, Gábor
AU - Schappals, Michael
AU - Schenk, Martin
AU - Schedemann, Andre
AU - Schönherr, Mandes
AU - Seckler, Steffen
AU - Stephan, Simon
AU - Stöbener, Katrin
AU - Tchipev, Nikola
AU - Wafai, Amer
AU - Werth, Stephan
AU - Hasse, Hans
N1 - Publisher Copyright:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2018/3
Y1 - 2018/3
N2 - This article outlines advances in molecular modeling and simulation using massively parallel high-performance computers (HPC). In the SkaSim project, partners from the HPC community collaborated with users from science and industry. The aim was to optimize the prediction of thermodynamic property data in terms of efficiency, quality and reliability using HPC methods. In this context, various topics were dealt with: atomistic simulation of homogeneous gas bubble formation, surface tension of classical fluids and ionic liquids, multicriteria optimization of molecular models, the development of the molecular simulation codes ls1 mardyn and ms2, atomistic simulation of gas separation processes, molecular membrane structure generators, transport resistors and the evaluation of predictive property data models based on specific mixture types.
AB - This article outlines advances in molecular modeling and simulation using massively parallel high-performance computers (HPC). In the SkaSim project, partners from the HPC community collaborated with users from science and industry. The aim was to optimize the prediction of thermodynamic property data in terms of efficiency, quality and reliability using HPC methods. In this context, various topics were dealt with: atomistic simulation of homogeneous gas bubble formation, surface tension of classical fluids and ionic liquids, multicriteria optimization of molecular models, the development of the molecular simulation codes ls1 mardyn and ms2, atomistic simulation of gas separation processes, molecular membrane structure generators, transport resistors and the evaluation of predictive property data models based on specific mixture types.
KW - Molecular dynamics
KW - Molecular simulation
KW - Monte-Carlo simulation
KW - Thermodynamic data
UR - http://www.scopus.com/inward/record.url?scp=85041170380&partnerID=8YFLogxK
U2 - 10.1002/cite.201700113
DO - 10.1002/cite.201700113
M3 - 回顧評介論文
AN - SCOPUS:85041170380
SN - 0009-286X
VL - 90
SP - 295
EP - 306
JO - Chemie-Ingenieur-Technik
JF - Chemie-Ingenieur-Technik
IS - 3
ER -