Singular Integrals Associated with Zygmund Dilations

Yongsheng Han, Ji Li, Chin Cheng Lin, Chaoqiang Tan

研究成果: 雜誌貢獻期刊論文同行評審

9 引文 斯高帕斯(Scopus)

摘要

The main purpose of this paper is to study multi-parameter singular integral operators which commute with Zygmund dilations. Motivated by some explicit examples of singular integral operators studied in Ricci and Stein (Ann Inst Fourier (Grenoble) 42:637–670, 1992), Fefferman and Pipher (Am J Math 11:337–369, 1997), and Nagel and Wainger (Am J Math 99:761–785, 1977), we introduce a class of singular integral operators on R3 associated with Zygmund dilations by providing suitable version of regularity conditions and cancellation conditions on convolution kernels, and then show the boundedness for this class of operators on Lp, 1 < p< ∞.

原文???core.languages.en_GB???
頁(從 - 到)2410-2455
頁數46
期刊Journal of Geometric Analysis
29
發行號3
DOIs
出版狀態已出版 - 15 7月 2019

指紋

深入研究「Singular Integrals Associated with Zygmund Dilations」主題。共同形成了獨特的指紋。

引用此