跳至主導覽
跳至搜尋
跳過主要內容
國立中央大學 首頁
說明與常見問題
English
中文
首頁
人才檔案
研究單位
研究計畫
研究成果
資料集
榮譽/獲獎
學術活動
新聞/媒體
影響
按專業知識、姓名或所屬機構搜尋
Sensor-to-Image Based Neural Networks: A Reliable Reconstruction Method for Diffuse Optical Imaging of High-Scattering Media
Diannata Rahman Yuliansyah,
Min Chun Pan
, Ya Fen Hsu
機械工程學系
研究成果
:
雜誌貢獻
›
期刊論文
›
同行評審
5
引文 斯高帕斯(Scopus)
總覽
指紋
研究計畫
(2)
指紋
深入研究「Sensor-to-Image Based Neural Networks: A Reliable Reconstruction Method for Diffuse Optical Imaging of High-Scattering Media」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Image-based
100%
Neural Network
100%
Scattering Media
100%
Deep Learning Methods
100%
Fully Convolutional Neural Network
100%
Reconstruction Method
100%
Diffuse Optical Imaging
100%
Tikhonov Regularization Method
100%
Contrast Imaging
100%
Imaging Task
100%
Neural Network Model
50%
Encoder
50%
Measurement System
50%
Neural Network Method
50%
Ill-conditioned Problem
50%
Clinical Practice
50%
Extracting Features
50%
Deep Learning
50%
Skip Connection
50%
U-Net
50%
Superior Performance
50%
Diffuse Optical Tomography
50%
Image Reconstruction
50%
Function Approximation
50%
Synthesized Data
50%
Image Domain
50%
Convolutional Neural Network Architecture
50%
Reconstructed Image
50%
Deep Learning Architectures
50%
Biomedical Imaging
50%
Breast Cancer Imaging
50%
Imaging Applications
50%
Output Image
50%
Imaging Problems
50%
Reconstruction Function
50%
Complex Imaging
50%
Compressed Representation
50%
Scanning Measurement
50%
Computer Science
Neural Network
100%
Scattering Medium
100%
Deep Learning Method
100%
Tikhonov Regularization
50%
Image Contrast
50%
Regularization Method
50%
Regularization
25%
Neural Network Approach
25%
Measurement System
25%
Neural Network Model
25%
Superior Performance
25%
Function Approximation
25%
Image Reconstruction
25%
Neural Network Architecture
25%
Convolutional Neural Network
25%
Reconstructed Image
25%
U-Net
25%
Reconstruction Function
25%
Engineering
Scattering Medium
100%
Deep Learning Method
100%
Regularization Method
50%
Network Model
25%
Measurement System
25%
Regularization
25%
Neural Network Approach
25%
Image Reconstruction
25%
Image Domain
25%
Neural Network Architecture
25%
Reconstructed Image
25%
Output Image
25%
Reconstruction Function
25%
Convolutional Neural Network
25%
Material Science
Optical Imaging
100%
Tomography
50%
Tumor
50%
Chemical Engineering
Neural Network
100%
Deep Learning Method
66%