Semigroup characterization of Besov type Morrey spaces and well-posedness of generalized Navier-Stokes equations

Chin Cheng Lin, Qixiang Yang

研究成果: 雜誌貢獻期刊論文同行評審

25 引文 斯高帕斯(Scopus)

摘要

The well-posedness of generalized Navier-Stokes equations with initial data in some critical homogeneous Besov spaces and in some critical Q spaces was known. In this paper, we establish a wavelet characterization of Besov type Morrey spaces under the action of semigroup. As an application, we obtain the well-posedness of smooth solution for the generalized Navier-Stokes equations with initial data in some critical homogeneous Besov type Morrey spaces (Bp,pγ1,γ2)n (12<β<1, γ 12=1-2β), 1<p≤2 and np+2β-2<γ2<np or 2<p<∞, and max{np+2β-2,β-1}<γ2<np, with divergence free. These critical homogeneous Besov type Morrey spaces are larger than corresponding classical Besov spaces and cover Q spaces.

原文???core.languages.en_GB???
頁(從 - 到)804-846
頁數43
期刊Journal of Differential Equations
254
發行號2
DOIs
出版狀態已出版 - 15 1月 2013

指紋

深入研究「Semigroup characterization of Besov type Morrey spaces and well-posedness of generalized Navier-Stokes equations」主題。共同形成了獨特的指紋。

引用此