Risk-Efficient Sequential Simulation Estimators

Raghu Pasupathy, Yingchieh Yeh

研究成果: 書貢獻/報告類型會議論文篇章同行評審

1 引文 斯高帕斯(Scopus)

摘要

Using steady state mean estimation as the prototypical context, we present a decision-theoretic framework for sequentially estimating quantities associated with an observable discrete-time stochastic process. Our framework includes weights for estimator quality and a linear cost of sampling. We first show that the optimal time to stop sampling in the hypothetical case when the autocovariance function of the process is known is the square root of the relative cost and the area under the autocovariance function. This expression inspires a sequential procedure that uses a partially overlapping batch means estimator to stand-in for the area under the autocovariance function. The sequential procedure is asymptotically optimal in the sense that the ratio of its risk and that of the optimal risk in the hypothetical scenario approaches unity in a certain asymptotic regime. The nature of our analysis hints at a general optimality principle that may be more generally prevalent.

原文???core.languages.en_GB???
主出版物標題Proceedings of the 2020 Winter Simulation Conference, WSC 2020
編輯K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, R. Thiesing
發行者Institute of Electrical and Electronics Engineers Inc.
頁面2879-2886
頁數8
ISBN(電子)9781728194998
DOIs
出版狀態已出版 - 14 12月 2020
事件2020 Winter Simulation Conference, WSC 2020 - Orlando, United States
持續時間: 14 12月 202018 12月 2020

出版系列

名字Proceedings - Winter Simulation Conference
2020-December
ISSN(列印)0891-7736

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2020 Winter Simulation Conference, WSC 2020
國家/地區United States
城市Orlando
期間14/12/2018/12/20

指紋

深入研究「Risk-Efficient Sequential Simulation Estimators」主題。共同形成了獨特的指紋。

引用此