Reduced Model Size Deep Convolutional Neural Networks for Small-Footprint Keyword Spotting

Tsung Han Tsai, Xin Hui Lin

研究成果: 書貢獻/報告類型會議論文篇章同行評審

2 引文 斯高帕斯(Scopus)

摘要

This paper discussed the application of Densely Connected Convolutional Networks (DenseNet), group convolution, and squeeze-and-excitation Networks (SENet) in keyword spotting tasks. We validated the network using the Google Speech Commands Dataset. Our proposed network has better accuracy than other networks even with less number of parameters and floating-point operations (FLOPs). In addition, we varied the depth and width of the network to build a compact variant network. It also outperforms other compact variants.

原文???core.languages.en_GB???
主出版物標題2021 28th IEEE International Conference on Electronics, Circuits, and Systems, ICECS 2021 - Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781728182810
DOIs
出版狀態已出版 - 2021
事件28th IEEE International Conference on Electronics, Circuits, and Systems, ICECS 2021 - Dubai, United Arab Emirates
持續時間: 28 11月 20211 12月 2021

出版系列

名字2021 28th IEEE International Conference on Electronics, Circuits, and Systems, ICECS 2021 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???28th IEEE International Conference on Electronics, Circuits, and Systems, ICECS 2021
國家/地區United Arab Emirates
城市Dubai
期間28/11/211/12/21

指紋

深入研究「Reduced Model Size Deep Convolutional Neural Networks for Small-Footprint Keyword Spotting」主題。共同形成了獨特的指紋。

引用此