Rapid thermal annealing effects on the structural and nanomechanical properties of Ga-doped ZnO thin films

S. R. Jian, G. J. Chen, S. K. Wang, T. C. Lin, J. S.C. Jang, J. Y. Juang, Y. S. Lai, J. Y. Tseng

研究成果: 雜誌貢獻期刊論文同行評審

18 引文 斯高帕斯(Scopus)

摘要

In this study, the structural and nanomechanical properties of Ga-doped ZnO (GZO) thin films on glass substrates followed by rapid thermal annealing (RTA) process were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and nanoindentation techniques. The XRD results indicated that the annealed GZO thin films are textured, having a preferential crystallographic orientation along the hexagonal wurtzite (002) axis. Both the grain size and surface roughness of the annealed GZO thin films exhibit an increasing trend after RTA treatment. The hardness and Young's modulus of the annealed GZO thin films were measured by a Berkovich nanoindenter operated with the continuous contact stiffness measurements (CSM) option. Furthermore, the hardness and Young's modulus were found to increase with increasing grain size when the RTA time was prolonged from 0.5 to 3. min. The deformation behavior is referred to the inverse Hall-Petch effect commonly observed in systems deformed primarily via grain boundary sliding. The suppression of dislocation movement-associated deformation mechanism might be arisen from strong pinning effects introduced by Ga-doping.

原文???core.languages.en_GB???
頁(從 - 到)176-179
頁數4
期刊Surface and Coatings Technology
231
DOIs
出版狀態已出版 - 25 9月 2013

指紋

深入研究「Rapid thermal annealing effects on the structural and nanomechanical properties of Ga-doped ZnO thin films」主題。共同形成了獨特的指紋。

引用此