TY - JOUR
T1 - Rapid Fabrication of Biocomposites by Encapsulating Enzymes into Zn-MOF-74 via a Mild Water-Based Approach
AU - Hsu, Pei Hsiang
AU - Chang, Chien Chun
AU - Wang, Tsu Hao
AU - Lam, Phuc Khanh
AU - Wei, Ming Yu
AU - Chen, Ching Tien
AU - Chen, Chin Yu
AU - Chou, Lien Yang
AU - Shieh, Fa Kuen
N1 - Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021/11/10
Y1 - 2021/11/10
N2 - A zinc-based metal organic framework, Zn-MOF-74, which has a unique one-dimensional (1D) channel and nanoscale aperture size, was rapidly obtained in 10 min using a de novo mild water-based system at room temperature, which is an example of green and sustainable chemistry. First, catalase (CAT) enzyme was encapsulated into Zn-MOF-74 (denoted as CAT@Zn-MOF-74), and comparative assays of biocatalysis, size-selective protection, and framework-confined effects were investigated. Electron microscopy and powder X-ray diffraction were used for characterization, while electrophoresis and confocal microscopy confirmed the immobilization of CAT molecules inside the single hexagonal MOF crystals at loading of ∼15 wt %. Furthermore, the CAT@Zn-MOF-74 hybrid was exposed to a denaturing reagent (urea) and proteolytic conditions (proteinase K) to evaluate its efficacy. The encapsulated CAT maintained its catalytic activity in the decomposition of hydrogen peroxide (H2O2), even when exposed to 0.05 M urea and proteinase K, yielding an apparent observed rate constant (kobs) of 6.0 × 10-2 and 6.6 × 10-2 s-1, respectively. In contrast, free CAT exhibited sharply decreased activity under these conditions. Additionally, the bioactivity of CAT@Zn-MOF-74 for H2O2 decomposition was over three times better than that of the biocomposites based on zeolitic imidazolate framework 90 (ZIF-90) owing to the nanometer-scaled apertures, 1D channel, and less confinement effects in Zn-MOF-74 crystallites. To demonstrate the general applicability of this strategy, another enzyme, α-chymotrypsin (CHT), was also encapsulated in Zn-MOF-74 (denoted as CHT@Zn-MOF-74) for action against a substrate larger than H2O2. In particular, CHT@Zn-MOF-74 demonstrated a biological function in the hydrolysis of l-phenylalanine p-nitroanilide (HPNA), the activity of ZIF-90-encapsulated CHT was undetectable due to aperture size limitations. Thus, we not only present a rapid eco-friendly approach for Zn-MOF-74 synthesis but also demonstrate the broader feasibility of enzyme encapsulation in MOFs, which may help to meet the increasing demand for their industrial applications.
AB - A zinc-based metal organic framework, Zn-MOF-74, which has a unique one-dimensional (1D) channel and nanoscale aperture size, was rapidly obtained in 10 min using a de novo mild water-based system at room temperature, which is an example of green and sustainable chemistry. First, catalase (CAT) enzyme was encapsulated into Zn-MOF-74 (denoted as CAT@Zn-MOF-74), and comparative assays of biocatalysis, size-selective protection, and framework-confined effects were investigated. Electron microscopy and powder X-ray diffraction were used for characterization, while electrophoresis and confocal microscopy confirmed the immobilization of CAT molecules inside the single hexagonal MOF crystals at loading of ∼15 wt %. Furthermore, the CAT@Zn-MOF-74 hybrid was exposed to a denaturing reagent (urea) and proteolytic conditions (proteinase K) to evaluate its efficacy. The encapsulated CAT maintained its catalytic activity in the decomposition of hydrogen peroxide (H2O2), even when exposed to 0.05 M urea and proteinase K, yielding an apparent observed rate constant (kobs) of 6.0 × 10-2 and 6.6 × 10-2 s-1, respectively. In contrast, free CAT exhibited sharply decreased activity under these conditions. Additionally, the bioactivity of CAT@Zn-MOF-74 for H2O2 decomposition was over three times better than that of the biocomposites based on zeolitic imidazolate framework 90 (ZIF-90) owing to the nanometer-scaled apertures, 1D channel, and less confinement effects in Zn-MOF-74 crystallites. To demonstrate the general applicability of this strategy, another enzyme, α-chymotrypsin (CHT), was also encapsulated in Zn-MOF-74 (denoted as CHT@Zn-MOF-74) for action against a substrate larger than H2O2. In particular, CHT@Zn-MOF-74 demonstrated a biological function in the hydrolysis of l-phenylalanine p-nitroanilide (HPNA), the activity of ZIF-90-encapsulated CHT was undetectable due to aperture size limitations. Thus, we not only present a rapid eco-friendly approach for Zn-MOF-74 synthesis but also demonstrate the broader feasibility of enzyme encapsulation in MOFs, which may help to meet the increasing demand for their industrial applications.
KW - biocatalysis
KW - biocomposites
KW - catalase
KW - chymotrypsin
KW - enzyme immobilization
KW - metal-organic frameworks
UR - http://www.scopus.com/inward/record.url?scp=85111209365&partnerID=8YFLogxK
U2 - 10.1021/acsami.1c09052
DO - 10.1021/acsami.1c09052
M3 - 期刊論文
C2 - 34232015
AN - SCOPUS:85111209365
SN - 1944-8244
VL - 13
SP - 52014
EP - 52022
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 44
ER -