摘要
Fuel cells are considered potential energy conversion devices for utopia; nevertheless, finding a highly efficacious and economical electrocatalyst for the oxygen reduction reaction (ORR) is of great interest. By keeping this in view, we have proposed a novel design of a trimetallic nanocatalyst (NC) comprising atomic Pt clusters at the heterogeneous Ni(OH)2-to-Pd interface (denoted NPP-70). The as-prepared material surpasses the commercial J.M.-Pt/C (20 wt %) catalyst by ∼ 166 and ∼19 times with exceptionally high specific and mass activities of 16.11 mA cm-2 and 484.8 mA mgPt-1 at 0.90 V versus reversible hydrogen electrode (RHE) in alkaline ORR (0.1 M KOH), respectively. On top of that, NPP-70 NC retains nearly 100% performance after 10k accelerated durability test (ADT) cycles. The results of physical characterization and electrochemical analysis confirm that atomic-scale Pt clusters induce strong lattice strain (compressive) at the Ni(OH)2-to-Pd interface, which triggers the electron relocation from Ni to Pt atoms. Such charge localization is vital for O2 splitting on surface Pt atoms, followed by the relocation of OH- ions from the Pd surface. Besides, a sharp fall down in ORR performance (mass activity is 37 mA mgPt-1 at 0.90 V versus RHE) is observed when the Pt clusters are decorated on the surface of NiOx and Pd (denoted NPP-RT). In situ partial fluorescence yield mode X-ray absorption spectroscopy (PFY-XAS) was employed to reveal the ORR pathways on both configurations. The obtained results demonstrate that interface engineering can be a potential approach to boost the electrocatalytic activity of metal hydroxide/oxide-supported Pd nanoparticles and in turn allow Pd to be a promising alternative for commercial Pt catalysts.
原文 | ???core.languages.en_GB??? |
---|---|
頁(從 - 到) | 16177-16188 |
頁數 | 12 |
期刊 | ACS Applied Materials and Interfaces |
卷 | 15 |
發行號 | 12 |
DOIs | |
出版狀態 | 已出版 - 29 3月 2023 |