Proof of a conjecture on numerical ranges of weighted cyclic matrices

研究成果: 雜誌貢獻期刊論文同行評審

摘要

Recall that the n-by-n weighted cyclic matrix with weights a1,…,an(∈C) is the matrix C(a1,…,an)=[0a10⋱⋱an−1an0], and W(C(a1,…,an)) is the numerical range of C(a1,…,an). Let Sn be the symmetric group on {1,…,n}. In [2], Chien et al. conjecture that if |a1|≥|a2|≥…≥|an| then W(C(aη(1),…,aη(n)))⊆W(C(aσn(1),…,aσn(n))) for any permutation η∈Sn, where σn∈Sn is defined by (σn(1),…,σn(n))={(n−1,…,4,2,1,3,5,…,n−2,n)if n is odd,(n−2,…,4,2,1,3,5,…,n−1,n)if n is even. In this note, we settle the conjecture in the affirmative.

原文???core.languages.en_GB???
頁(從 - 到)295-308
頁數14
期刊Linear Algebra and Its Applications
682
DOIs
出版狀態已出版 - 1 2月 2024

指紋

深入研究「Proof of a conjecture on numerical ranges of weighted cyclic matrices」主題。共同形成了獨特的指紋。

引用此