Product Quality Prediction with Deep Transfer Learning for Smart Factories

Jehn Ruey Jiang, Zi Kuan Cheng

研究成果: 書貢獻/報告類型會議論文篇章同行評審

1 引文 斯高帕斯(Scopus)

摘要

This paper proposes to use deep transfer learning (DTL) 'layer freezing' method to build deep neural network (DNN) models for a target domain with few data on the basis of well-trained DNN models for a source domain with abundant data. Experiments using the DTL method are conducted for building DNN models to predict product surface roughness of wire electrical discharge machining (WEDM). The experimental results show that DTL indeed can help fast build models with high prediction accuracy for the target domain having few data.

原文???core.languages.en_GB???
主出版物標題2020 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2020
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781728173993
DOIs
出版狀態已出版 - 28 9月 2020
事件7th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2020 - Taoyuan, Taiwan
持續時間: 28 9月 202030 9月 2020

出版系列

名字2020 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2020

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???7th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2020
國家/地區Taiwan
城市Taoyuan
期間28/09/2030/09/20

指紋

深入研究「Product Quality Prediction with Deep Transfer Learning for Smart Factories」主題。共同形成了獨特的指紋。

引用此