Prediction of soil erosion and sediment transport in a mountainous basin of Taiwan

Yuei An Liou, Quang Viet Nguyen, Duc Vinh Hoang, Duy Phien Tran

研究成果: 雜誌貢獻期刊論文同行評審

7 引文 斯高帕斯(Scopus)

摘要

Soil erosion substantially implicates global nutrient and carbon cycling of the land surface. Its monitoring is crucial for assessing and managing global land productivity and socio-economy. The Zhuoshui River Basin, the largest catchment, in Taiwan is highly susceptible to soil erosion by water due to extremely high rainfall, rugged terrain, easily eroded soil, and intensively agricultural cultivation over the steep land. Hence, this study examines the annual soil erosion rate for 2005, 2011, and 2019 and the average long-term soil erosion and sediment yield (SY) during 2005–2019. Coupling of the Revised Universal Soil Loss Equation (RUSLE) and sediment delivery ratio (SDR) models is implemented using remote sensing and GIS techniques. The soil erosion rate is classified into five classes, namely mild (0–10 t ha−1 year−1), moderate (10–50 t ha−1 year−1), moderately severe (50–100 t ha−1 year−1), severe (100–150 t ha−1 year−1), and very severe (> 150 t ha−1 year−1). Over one half of the total area is categorized as moderate and moderately severe classes, and one-third of the whole basin as severe and very severe classes. Recently, mild and moderate classes increase, while moderately severe, severe, and very severe decrease. During 2005–2019, the annual soil loss rate ranges from 0.00 to 6,881.88 t ha−1 year−1 with an average rate of 122.94 t ha−1 year−1. Among the SDR models, the RUSLE combined with the SDR model with the length and slope gradient of mainstream shows satisfactory sediment yield estimation. Predictably, the downstream receives a massive sediment delivery from all upper streams (246.06 × 106 t year−1), and the percent bias values for all sub-basins are below ± 39.0%. The study provides a rapid approach to investigate soil erosion and sediment yield, and it can be applied to the other basins in Taiwan. More importantly, information about spatial patterns of soil erosion and SY is critical to establish suitable measures to achieve effective watershed planning and optimize the regional productivity and socio-economy. The proposed approach is potentially to identify risk areas, conduct scenario estimation for management, and perform spatiotemporal comparison of soil erosion, while adjustment in the empirical formulas of the proposed approach may be needed when it is applied to the other regions, especially outside Taiwan. [Figure not available: see fulltext.].

原文???core.languages.en_GB???
文章編號52
期刊Progress in Earth and Planetary Science
9
發行號1
DOIs
出版狀態已出版 - 12月 2022

指紋

深入研究「Prediction of soil erosion and sediment transport in a mountainous basin of Taiwan」主題。共同形成了獨特的指紋。

引用此