Prediction of hydrogen desorption performance of Mg2Ni hydride reactors

C. A. Chung, Ci Siang Lin

研究成果: 雜誌貢獻期刊論文同行評審

61 引文 斯高帕斯(Scopus)

摘要

This work performs the simulation of hydrogen desorption processes with Mg2Ni hydrogen storage alloy to investigate the canister designs. Reaction rates and equilibrium pressures of Mg2Ni alloy were calculated by fitting experimental data in literature using least squares regression. The obtained reaction kinetics was used to model the thermalfluid behavior of hydrogen desorption. Since the alloy powders will expand and shrink during the absorption and desorption cycle, the canisters considered are comprised of expansion volume atop the metal bed. In order to enhance the heat transfer performance of the canister, an air pipe is equipped at the canister centre line with/without internal fins. Detailed equations that describe the force convection of the heat exchange pipe and the natural convection at the reactor wall are carefully incorporated in the model. Simulation results show that the bare cylindrical canister can not complete the desorption process in 2.8 h, while the canister equipped with the concentric heat exchanger pipe and fins can complete desorption within 1.7 h.Results also demonstrate that the reaction rates can be further increased by increasing the pipe flow velocity and/or increasing the fin volume.

原文???core.languages.en_GB???
頁(從 - 到)9409-9423
頁數15
期刊International Journal of Hydrogen Energy
34
發行號23
DOIs
出版狀態已出版 - 12月 2009

指紋

深入研究「Prediction of hydrogen desorption performance of Mg2Ni hydride reactors」主題。共同形成了獨特的指紋。

引用此