摘要
A simple, low-cost, and environmentally benign process for synthesizing nanostructured NiO/NiAl2O4 on multiple kinds of carbon nanostructures (CNS) is presented. This method develops polylactic acid (PLA) based waste plastic materials for the producing CNS. These composites (NiO@NiAl2O4/CNS) were examined as potential electrodes in supercapacitors (SC) as they exhibit good charge/discharge reversibility and provide adequate specific capacitance values with a maximum being 1984 F/g at 0.5 A g-1. It is noteworthy that the cycling stability of this sample at 10 A g-1 maintained 101.7% of its initial capacity even after 5000 GCD cycles. An asymmetric supercapacitor (ASC) was built and analyzed, with NiO@NiAl2O4/CNS serving as the cathode and activated carbon serving as the anode of the device. The concluded device has an energy density of 58 Wh kg-1 with a power density of 986 W kg-1 and a SCs of 216.5 F/g. The results showed that the materials mentioned are a great option to use as electrode materials in applications involving the storage of energy.
原文 | ???core.languages.en_GB??? |
---|---|
頁(從 - 到) | 26606-26617 |
頁數 | 12 |
期刊 | Environmental Science and Pollution Research |
卷 | 31 |
發行號 | 18 |
DOIs | |
出版狀態 | 已出版 - 4月 2024 |