Pillared-bilayer zinc(ii)-organic laminae: pore modification and selective gas adsorption

Li Wei Lee, Tzuoo Tsair Luo, Sheng Han Lo, Gene Hsiang Lee, Shie Ming Peng, Yen Hsiang Liu, Sheng Long Lee, Kuang Lieh Lu

研究成果: 雜誌貢獻期刊論文同行評審

16 引文 斯高帕斯(Scopus)


Three porous metal-organic frameworks, namely {[Zn2(azpy)(aip)2]·2DMF}n (1, azpy = 4,4′-azobipyridine, H2aip = 5-aminoisophthalic acid), {[Zn2(dipytz)(aip)2]·1.15DMF·0.85MeOH}n (2, dipytz = di-3,6-(4-pyridyl)-1,2,4,5-tetrazine) and {[Zn2(tpim)(aip)2]·2.5DMF·2H2O}n (3, tpim = 2,4,5-tri(4-pyridyl)imidazole), were synthesized under mild conditions. All of the compounds consisted of a honeycomb-like layer, [Zn(aip)]n, further pillared by N-donor ligands to form two-dimensional (2D) porous pillared-bilayer frameworks with 1D channels created inside the bilayers (4.1 × 10.1 Å2 for 1, 4.1 × 11.1 Å2 for 2, and 5.1 × 9.8 Å2 for 3). The resulting MOFs showed different pore volumes and channel shapes depending on the length and shape of the pillar ligands (35.7%, 41.7%, and 33.9% for 1-3, respectively). The pore volume in 3 decreased due to the presence of the uncoordinated pyridyl group of the tpim ligand. The frameworks of 1 and 2 show flexible properties upon undergoing solvent-exchange processes and their CO2 adsorption properties are different. These latter properties are affected by the functional groups of the linear pillar ligand (-N=N- and tetrazine group). In particular, compound 3 possesses less flexibility upon undergoing a solvent-exchange process and preferentially absorbs CO2 more efficiently rather than H2 and N2.

頁(從 - 到)6320-6327
出版狀態已出版 - 9 7月 2015


深入研究「Pillared-bilayer zinc(ii)-organic laminae: pore modification and selective gas adsorption」主題。共同形成了獨特的指紋。