TY - GEN
T1 - Periodic poling with short period for thin film lithium niobate waveguides
AU - Younesi, Mohammadreza
AU - Kumar, Pawan
AU - Stanicki, Badrudin Jakob
AU - Geiss, Reinhard
AU - Chang, Wei Kun
AU - Chen, Yen Hung
AU - Setzpfandt, Frank
AU - Pertsch, Thomas
N1 - Publisher Copyright:
© 2019 IEEE
PY - 2019
Y1 - 2019
N2 - Lithium niobate (LN) is a favourable material for many applications, especially in integrated optics, due to its excellent electro-optic, acousto-optic, and nonlinear optic properties. One promising application of LN is second-harmonic generation (SHG). For enhancing the efficiency of SHG, phase matching between the interacting waves is needed, which is often realized by employing quasi-phase matching (QPM) [1]. QPM is typically realized by periodic poling of LN [2,3], i.e. the periodic flipping of the crystal orientation. The needed period is determined by the wavelengths as well as by the wave vectors of the fundamental- and the second-harmonic waves (FW and SH, respectively). For the case of backward SHG with a fundamental wavelength of 1.55 µm, where the SH wave travels in the opposite direction to the FW, typically sub-micrometer periods of the poled LN are required [4].
AB - Lithium niobate (LN) is a favourable material for many applications, especially in integrated optics, due to its excellent electro-optic, acousto-optic, and nonlinear optic properties. One promising application of LN is second-harmonic generation (SHG). For enhancing the efficiency of SHG, phase matching between the interacting waves is needed, which is often realized by employing quasi-phase matching (QPM) [1]. QPM is typically realized by periodic poling of LN [2,3], i.e. the periodic flipping of the crystal orientation. The needed period is determined by the wavelengths as well as by the wave vectors of the fundamental- and the second-harmonic waves (FW and SH, respectively). For the case of backward SHG with a fundamental wavelength of 1.55 µm, where the SH wave travels in the opposite direction to the FW, typically sub-micrometer periods of the poled LN are required [4].
UR - http://www.scopus.com/inward/record.url?scp=85084614738&partnerID=8YFLogxK
M3 - 會議論文篇章
AN - SCOPUS:85084614738
SN - 9781728104690
T3 - Optics InfoBase Conference Papers
BT - The European Conference on Lasers and Electro-Optics, CLEO_Europe_2019
PB - Optica Publishing Group (formerly OSA)
T2 - The European Conference on Lasers and Electro-Optics, CLEO_Europe_2019
Y2 - 23 June 2019 through 27 June 2019
ER -