PERC: A personal email classifier

Shih Wen Ke, Chris Bowerman, Michael Oakes

研究成果: 書貢獻/報告類型會議論文篇章同行評審

5 引文 斯高帕斯(Scopus)

摘要

Improving the accuracy of assigning new email messages to small folders can reduce the likelihood of users creating duplicate folders for some topics. In this paper we presented a hybrid classification model, PERC, and use the Enron Email Corpus to investigate the performance of kNN, SVM and PERC in a simulation of a real-time situation. Our results show that PERC is significantly better at assigning messages to small folders. The effects of different parameter settings for the classifiers are discussed.

原文???core.languages.en_GB???
主出版物標題Advances in Information Retrieval - 28th European Conference on IR Research, ECIR 2006, Proceedings
頁面460-463
頁數4
DOIs
出版狀態已出版 - 2006
事件28th European Conference on Information Retrieval Research, ECIR 2006 - London, United Kingdom
持續時間: 10 4月 200612 4月 2006

出版系列

名字Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
3936 LNCS
ISSN(列印)0302-9743
ISSN(電子)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???28th European Conference on Information Retrieval Research, ECIR 2006
國家/地區United Kingdom
城市London
期間10/04/0612/04/06

指紋

深入研究「PERC: A personal email classifier」主題。共同形成了獨特的指紋。

引用此