People search via deep compressed sensing techniques

Bing Xian Lu, Yu Chung Tsai, Kuo Shih Tseng

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

People search can be reformulated as submodular maximization problems to achieve solutions with theoretical guarantees. However, the number of submodular function outcome is from N sets. Compressing functions via nonlinear Fourier transform and spraying out sets are two ways to overcome this issue. This research proposed the submodular deep compressed sensing of convolutional sparse coding (SDCS-CSC) and applied the Topological Fourier Sparse Set (TFSS) algorithms to solve people search problems. The TFSS is based on topological and compressed sensing techniques, while the CSC is based on DCS techniques. Both algorithms enable an unmanned aerial vehicle to search for the people in environments. Experiments demonstrate that the algorithms can search for the people more efficiently than the benchmark approaches. This research also suggests how to select CSC or TFSS algorithms for different search problems.

原文???core.languages.en_GB???
頁(從 - 到)2320-2348
頁數29
期刊Robotica
40
發行號7
DOIs
出版狀態已出版 - 2 7月 2022

指紋

深入研究「People search via deep compressed sensing techniques」主題。共同形成了獨特的指紋。

引用此