TY - JOUR
T1 - PCDD/F emissions and distributions in Waelz plant and ambient air during different operating stages
AU - Kai, Hsien Chi
AU - Shu, Hao Chang
AU - Moo, Been Chang
PY - 2007/4/1
Y1 - 2007/4/1
N2 - Significant formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) has been observed in a typical Waelz process plant. In 2005, the Waelz plant investigated was equipped with a dust settling chamber (DSC), a venturi cooling tower, a cyclone (CY), and baghouse filter (BF). In early 2006 activated carbon injection (ACI) was adopted to reduce PCDD/F emissions from the plant investigated. Samplings of flue gases and ash were simultaneously conducted at different sampling points in the Waelz plant to evaluate removal efficiency and partitioning of PCDD/Fs between the gas phase and particulates. As the operating temperature of the dust settling chamber (DSC) is increased from 480 to 580°C, the PCDD/F concentration measured at the DSC outlet decreases from 1220 to 394 ng-l-TEQ/Nm3. By applying ACI, the PCDD/F concentrations of stack gas decrease from 139-194 to 3.38 ng-l-TEQ/ Nm3 (a reduction of 97.6-98.3%) while the PCDD/F concentration of reacted ash increases dramatically from 0.97 to 29.4 ng-l-TEQ/g, as the activated carbon injection rate is controlled at 40 kg/h. Additionally, ambient air PCDD/F concentrations were measured in the vicinity of this facility during different operating stages (shutdown, and operation with and without ACI). The ambient PCDD/F concentration measured downwind and 2.5 km from the Waelz plant decreases from 568 to 206 fg-l-TEQ/m3 after ACI has been applied to collect the dioxins. Due to the high PCDD/F removal efficiency achieved with ACI + BF, about 24.3 and 3980 ng-l-TEQ/kg EAF-dust treated are discharged via stack gas and reacted ash, respectively, in this facility.
AB - Significant formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) has been observed in a typical Waelz process plant. In 2005, the Waelz plant investigated was equipped with a dust settling chamber (DSC), a venturi cooling tower, a cyclone (CY), and baghouse filter (BF). In early 2006 activated carbon injection (ACI) was adopted to reduce PCDD/F emissions from the plant investigated. Samplings of flue gases and ash were simultaneously conducted at different sampling points in the Waelz plant to evaluate removal efficiency and partitioning of PCDD/Fs between the gas phase and particulates. As the operating temperature of the dust settling chamber (DSC) is increased from 480 to 580°C, the PCDD/F concentration measured at the DSC outlet decreases from 1220 to 394 ng-l-TEQ/Nm3. By applying ACI, the PCDD/F concentrations of stack gas decrease from 139-194 to 3.38 ng-l-TEQ/ Nm3 (a reduction of 97.6-98.3%) while the PCDD/F concentration of reacted ash increases dramatically from 0.97 to 29.4 ng-l-TEQ/g, as the activated carbon injection rate is controlled at 40 kg/h. Additionally, ambient air PCDD/F concentrations were measured in the vicinity of this facility during different operating stages (shutdown, and operation with and without ACI). The ambient PCDD/F concentration measured downwind and 2.5 km from the Waelz plant decreases from 568 to 206 fg-l-TEQ/m3 after ACI has been applied to collect the dioxins. Due to the high PCDD/F removal efficiency achieved with ACI + BF, about 24.3 and 3980 ng-l-TEQ/kg EAF-dust treated are discharged via stack gas and reacted ash, respectively, in this facility.
UR - http://www.scopus.com/inward/record.url?scp=34247136881&partnerID=8YFLogxK
U2 - 10.1021/es061665p
DO - 10.1021/es061665p
M3 - 期刊論文
C2 - 17438809
AN - SCOPUS:34247136881
VL - 41
SP - 2515
EP - 2522
JO - Environmental Science and Technology
JF - Environmental Science and Technology
SN - 0013-936X
IS - 7
ER -