Pattern classification using eigenspace projection

Chen Ta Hsieh, Chin Chuan Han, Chang Hsing Lee, Kou Chin Fan

研究成果: 書貢獻/報告類型會議論文篇章同行評審

1 引文 斯高帕斯(Scopus)

摘要

Covariance matrices play the key role for dimension reduction in eigenspace projection methods for pattern recognition. Two scatters, an intraclass scatter and an interclass scatter, are obtained from samples for describing the sample distributions. The representation for these two scatters is classified into four categories. In this study, we focus on the analysis of the intraclass and interclass scatters. Three experiments, the evaluation for a music genre dataset, a bird sound dataset, and four face datasets, are conducted to make the comparisons of several state-of-the-art algorithms.

原文???core.languages.en_GB???
主出版物標題Proceedings of the 2012 8th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2012
頁面154-157
頁數4
DOIs
出版狀態已出版 - 2012
事件2012 8th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2012 - Piraeus-Athens, Greece
持續時間: 18 7月 201220 7月 2012

出版系列

名字Proceedings of the 2012 8th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2012

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2012 8th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2012
國家/地區Greece
城市Piraeus-Athens
期間18/07/1220/07/12

指紋

深入研究「Pattern classification using eigenspace projection」主題。共同形成了獨特的指紋。

引用此